
Розв'язати систему рівнянь {5х+2у=25,3х+4у=29} . У відповідь записати добуток отриманого розв'язку
х та у.

Ответы на вопрос




Ответ:хз хз хз хз хз хз хз хз
Объяснение:



Для розв'язання даної системи рівнянь можна використати метод заміщення або метод скорочених коефіцієнтів. Однак, найефективнішим способом буде використання методу Крамера.
Спочатку знайдемо визначник основної матриці системи:
| 5 2 |
| 3 4 |
Визначник основної матриці (D) рівний добутку головної діагоналі мінус добутку побічної діагоналі:
D = (5 * 4) - (2 * 3) = 20 - 6 = 14.
Знайдемо визначник матриці x, замінивши першу колонку основної матриці стовпцем вільних членів:
| 25 2 | | 29 4 |
Dx = (25 * 4) - (2 * 29) = 100 - 58 = 42.
Знайдемо визначник матриці y, замінивши другу колонку основної матриці стовпцем вільних членів:
| 5 25 | | 3 29 |
Dy = (5 * 29) - (25 * 3) = 145 - 75 = 70.
Тепер знайдемо значення x і y, розділивши відповідні визначники на визначник основної матриці:
x = Dx / D = 42 / 14 = 3.
y = Dy / D = 70 / 14 = 5.
Таким чином, отримали розв'язок системи рівнянь: x = 3, y = 5.
Добуток отриманого розв'язку х та у: 3 * 5 = 15.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili