
A train traveling at 54 km/h starts to decelerate at 0,3 m/s^2. How long will it take to stop? What
is the stopping distance?

Ответы на вопрос

Объяснение:
54 km/h = 15m/s V=a×t
t= V/a
t=15/0,3=50S
S=at^(2)/2
S=0,3×50×50/2=37,5 m
It's all.



To find out how long it will take for the train to stop, we can use the equation v = u + at, where v is the final velocity (0 m/s, as the train is stopping), u is the initial velocity (54 km/h, or 15 m/s), a is the deceleration (-0.3 m/s^2), and t is the time we want to find.
Rearranging the equation to solve for t, we get: 0 = 15 + (-0.3)t -15 = -0.3t t = 50 seconds
So, it will take 50 seconds for the train to stop.
To find the stopping distance, we can use the equation s = ut + (1/2)at^2, where s is the stopping distance, u is the initial velocity, t is the time, and a is the deceleration.
Plugging in the values, we get: s = 15*50 + (1/2)(-0.3)(50^2) s = 750 - 750 s = 0 meters
So, the stopping distance is 0 meters. This means that the train will stop exactly at the point where it starts decelerating.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili