
The braking distance of a car moving at a velocity of v1 = 20m/s is equal to 40m. What will the
braking distance S2 be at velocity of v2=25 m/s if it undergoes the same acceleration in both cases? 75.5 70 62.5 44.5 55 решение

Ответы на вопрос

Ответ:
Data:
S_1 = 40 m
V_1 = 20 m/s
V_2 = 25 m/s
V_x = 0 m/s
To Find:
a, S_2
Answer:
S = (V²_x - V²_0)/2a
a = (V²_x - V²_1)/2S_1 = (0 - 20²)/2*40 = -400/80 = -5 m/s²
S_2 = (0 - 25²)/2*(-5) = -625/-10 = 62,5 m



Ответ:
62.5
Объяснение:
V₁ = 20 m/s
S₁ = 40m
V₂ = 25 m/s
V = 0
S₂ = ?
S = (V²-V²₀)/2a
S₁ = -V₁²/2a
S₂ = -V₂²/2a
S₂/S₁ = (V₂/V₁)²
S₂ = S₁* (V₂/V₁)² = 40 m*(25 m/s / 20 m/s)² = 62.5 m



If the car undergoes the same acceleration in both cases, we can use the following equation to relate the braking distance to the initial velocity and acceleration:
Where:
- is the braking distance
- is the velocity
- is the acceleration
Given that the braking distance is 40 m and the initial velocity is 20 m/s, we can calculate the acceleration using the equation above:
Solving for :
Now, we can use the calculated acceleration to find the braking distance at a velocity of 25 m/s:
So, the braking distance at a velocity of 25 m/s is 31.25 meters. However, none of the options you provided match this value exactly. It's possible there might be a calculation error or a typo in the options. The closest option to the calculated value is 31.5 meters, which is not among the provided options.


Похожие вопросы

Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili