Вопрос задан 03.07.2023 в 20:46. Предмет Физика. Спрашивает Малиновцева Вероника.

Задача 1. Найти скорость относительно берега реки лодки, идущей против течения. Скорость течения

реки 1 м/с, скорость лодки относительно воды 2 м/с. Задача 2. Определите скорость течения в (км/ч), если скорость лодки вниз по реке 27 км/ч, а вверх 15 км/ч. Срочно и все по действиям
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Матрюхин Макс.

Ответ:

задача N1

1) 2+1=3(м/с) скорость лодки по течению

2) 2-1=1(м/с) скорость лодки против течения

Ответ: против теч: 1 м/с; по теч: 3 м/с

задача N2

1) (27-15):2=6.5(км/ч) скорость течения реки

Ответ:6.5 км/ч скорость течения реки

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Задача 1: Чтобы найти скорость лодки относительно берега реки, идущей против течения, нужно вычесть скорость течения из скорости лодки относительно воды.

Скорость лодки относительно воды = 2 м/с Скорость течения реки = 1 м/с

Скорость лодки относительно берега = Скорость лодки относительно воды - Скорость течения реки Скорость лодки относительно берега = 2 м/с - 1 м/с = 1 м/с

Ответ: Скорость лодки относительно берега реки составляет 1 м/с.

Задача 2: Для определения скорости течения реки можно воспользоваться системой уравнений, основанной на том, что при движении вниз по реке (со стороны берега) скорость лодки равна сумме скорости течения и скорости лодки относительно воды, а при движении вверх (против течения) скорость лодки будет равна разности этих величин.

Пусть V_t - скорость течения реки (в км/ч), V_л - скорость лодки относительно воды (в км/ч).

Из условия движения вниз по реке: 27 км/ч = V_t + V_л

Из условия движения вверх по реке: 15 км/ч = V_л - V_t

Теперь мы имеем систему уравнений, которую можно решить методом подстановки или сложением уравнений.

Из первого уравнения: V_л = 27 км/ч - V_t

Подставим это значение во второе уравнение: 15 км/ч = (27 км/ч - V_t) - V_t

Решим уравнение: 15 км/ч = 27 км/ч - 2V_t

2V_t = 27 км/ч - 15 км/ч 2V_t = 12 км/ч V_t = 6 км/ч

Ответ: Скорость течения реки составляет 6 км/ч.

Таким образом, скорость течения реки равна 6 км/ч.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос