Вопрос задан 20.06.2023 в 23:41. Предмет Физика. Спрашивает Шевченко Маша.

Сделать конспект на тему оптимальная запись больших и малых чисел​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Олефир Слава.

РИСУНОК СРИСУЙ

Форма записи больших и малых чисел

Физические величины при измерениях и вычислениях обычно выражают числами. Они могут значительно отличаться друг от друга и выражаться как чрезвычайно малыми, так и гигантскими числами. Например, размеры различных тел лежат в пределах от микроскопических до космических масштабов и различаются в 1000000000000000000000000000000... раз (всего надо написать 60 нулей) – такое число даже сложно прочитать!

Как же записать очень малое или очень большое число, чтобы сэкономить бумагу и чтобы легко оперировать этими числами – складывать, вычитать, умножать, делить, да и вообще быстро прочитать и понять записанное?

Наиболее удобный способ записи малых и больших чисел заключается в использовании множителя 10 в некоторой степени. Например, число 2000 можно записать как 2·1000 или 2·103. Степень десяти (в данном случае «3») показывает, сколько нулей нужно приписать справа за первым множителем (в нашем примере «2»). Это называют записью числа в стандартной форме. Если число содержит более, чем одну значащую цифру, например 21500, то его можно записать как 21500·100 или 2150·101 или 215·102 или 21,5·103 или 2,15·104 или 0,215·105 или 0,0215·106 и так далее.

Запомним: в стандартной форме числа до запятой всегда оставляют только одну цифру, отличную от нуля, а остальные цифры записывают после запятой. Итак, в стандартной форме число 21500 = 2,15·104.

Когда вы будете «разворачивать» (то есть записывать в обычном виде) число, представленное в стандартной форме, например, 3,71·105, то начинайте отсчитывать цифры в количестве пяти (таков в нашем примере показатель степени десяти) сразу после запятой, включая и значащие цифры «71», а недостающие цифры замените нулями: 3,71·105 = 371000.

С большими числами мы выяснили, перейдём теперь к малым. Например, число 0,0375 тоже можно записать в стандартной форме так: 3,75·10–2. Первый множитель – первая значащая цифра, затем запятая и остальные цифры (в нашем примере это «3», «запятая», «75»). Показатель степени равен позиции после запятой, на которой стоит первая отличная от нуля цифра (в нашем примере это вторая позиция, поскольку именно там стоит первая ненулевая цифра «3»). Перед показателем ставится знак «минус», и это означает, что при «разворачивании» числа нули нужно будет ставить не справа, а слева. Например: 1,05·10–5 = 0,0000105.

Размеры некоторых малых тел

Остриё булавки 0,0001 м 1·10–4 м

Инфузория-туфелька 0,0002 м 2·10–4 м

Бактерия пневмонии 0,0000001 м 1·10–7 м

Клетка крови 0,00000075 м 7,5·10–7 м

Молекула белка 0,00000001 м 1·10–8 м

Атом водорода 0,0000000002 м 2·10–10 м

Размеры некоторых больших тел

Диаметр Земли 12800000 м 1,28·107 м

от Земли до Луны 384000000 м 3,84·108 м

Диаметр Солнца 1390000000 м 1,39·109 м

от Земли до Солнца 150000000000 м 1,5·1011 м

1 световой год 9500000000000000 м 9,5·1015 м

1 парсек 30800000000000000 м 3,08·1016 м

Все числа, записанные в стандартной форме, можно складывать и вычитать. Для сложения двух чисел, записанных в такой форме, сначала нужно преобразовать их так, чтобы степень десяти была одинаковой. Например, 2,15·104 + 3,71·105 можно переписать в виде: 0,215·105 + 3,71·105. Теперь складываем первые множители: 0,215 + 3,71 = 3,925 и приписываем справа общий второй множитель 105. Получим результат: 3,925·105. С вычитанием поступаем по аналогии: 3,71·105 – 2,15·104 = 3,71·105 – 0,215·105 = (3,71 – 0,215) · 105 = 3,495·105.

Для умножения чисел в стандартной форме, например, 5,2·104 · 3,7·105, нужно перемножить первые сомножители: 5,2 · 3,7 = 19,24, а затем сложить показатели степеней: 104 · 105 = 104+5 = 109. Получим результат: 19,24·109, в котором перенесём запятую на один знак влево: 1,924·1010. При делении чисел в стандартной форме записи, например 5,4·104 : 3,6·106 следует разделить первые множители 5,4 : 3,6 = 1,5 и приписать второй множитель – десять в степени, где показатели вычитаются: 104 : 106 = 104-6 = 10–2. Получим ответ: 1,5·10-2.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Оптимальная запись больших и малых чисел - это способ записи чисел, который позволяет легко читать и понимать значения чисел, а также выполнять операции с ними.

Для записи больших чисел часто используется форма научной записи, которая состоит из двух частей: мантиссы и порядка. Мантисса представляет собой число от 1 до 9, после которого следует десятичная точка и остальные цифры числа. Порядок указывает, насколько нужно переместить десятичную точку, чтобы получить исходное число.

Например, число 4 500 000 можно записать в научной форме как 4.5 * 10^6. Здесь мантисса равна 4.5, а порядок равен 6, так как десятичная точка должна быть перемещена на шесть разрядов вправо.

Также для записи больших чисел можно использовать префиксы метрической системы, такие как кило (k), мега (M), гига (G) и т.д. Например, 4 500 000 можно записать как 4.5 М.

Для записи малых чисел используется так называемая экспоненциальная форма записи, где число представляется в виде мантиссы, умноженной на степень десятки. В этом случае мантисса находится в интервале от 0 до 1, а степень десятки может быть отрицательной.

Например, число 0.00045 можно записать в экспоненциальной форме как 4.5 * 10^(-4). Здесь мантисса равна 4.5, а степень десятки равна -4, так как десятичная точка должна быть перемещена на четыре разряда влево.

Также для записи малых чисел можно использовать префиксы метрической системы, такие как милли (mк), микро (µ), нано (n) и т.д. Например, 0.00045 можно записать как 450 мк.

Важно отметить, что оптимальная запись чисел также зависит от контекста, в котором они используются. Например, в научных и инженерных расчетах наиболее распространена научная форма записи, так как она позволяет легко манипулировать большими и малыми числами. Однако, в других ситуациях может быть предпочтительнее использовать обычную десятичную запись чисел без префиксов и экспоненты.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос