
Помогите вычислить при помощи определённого интеграла площадь фигуры, ограниченной графиком функции
y=x^2-4 и осью Ox ; C рисунком

Ответы на вопрос

Для начала найдём значения х, при которых функция ограничена этими линиями, положив у = 0.
x² - 4 = 0
x = ± 2.
На рисунке площадь заштрихованной фигуры.




Для вычисления площади фигуры, ограниченной графиком функции y = x^2 - 4 и осью Ox, мы можем использовать определенный интеграл. Площадь фигуры будет равна интегралу от функции y = x^2 - 4 в пределах, где y больше или равно нулю.
Вычисление площади фигуры
Для вычисления площади фигуры, ограниченной графиком функции y = x^2 - 4 и осью Ox, мы можем использовать определенный интеграл. Площадь фигуры будет равна интегралу от функции y = x^2 - 4 в пределах, где y больше или равно нулю.Мы можем записать функцию в виде y = x^2 - 4 и найти точки пересечения с осью Ox, где y = 0. Решая уравнение x^2 - 4 = 0, получаем две точки пересечения: x = -2 и x = 2.
Таким образом, для вычисления площади фигуры, мы можем взять определенный интеграл от функции y = x^2 - 4 в пределах от x = -2 до x = 2.
Вычисление интеграла
Для вычисления интеграла, мы можем использовать различные методы, такие как метод прямоугольников, метод тrapezoid, метод Simpson и другие. В данном случае, мы будем использовать метод трапеций для вычисления интеграла.Интеграл от функции y = x^2 - 4 в пределах от x = -2 до x = 2 можно записать следующим образом:
∫[x=-2 to x=2] (x^2 - 4) dx
Вычислим данный интеграл:
∫[x=-2 to x=2] (x^2 - 4) dx = [x^3/3 - 4x] [x=-2 to x=2]
Подставим верхний и нижний пределы интегрирования:
([2^3/3 - 4(2)] - [-2^3/3 - 4(-2)])
Вычислим данное выражение:
([8/3 - 8] - [-8/3 + 8]) = (8/3 - 8 + 8/3 - 8) = -16/3
Таким образом, площадь фигуры, ограниченной графиком функции y = x^2 - 4 и осью Ox, равна -16/3.
Рисунок
Для наглядности, приложен рисунок, который показывает график функции y = x^2 - 4 и область, ограниченную этим графиком и осью Ox.
Надеюсь, это помогло! Если у вас есть еще вопросы, не стесняйтесь задавать.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili