
Вопрос задан 29.10.2023 в 01:52.
Предмет Математика.
Спрашивает Дикманов Дима.
Стороны треугольника 4 см, 5 см и 6 см. Найдите высоту , приведённую к большей стороне.


Ответы на вопрос

Отвечает Даулетхан Аружан.
Ответ:
15см
Пошаговое объяснение:
Вьо сумирывать и получется верхушка



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения высоты, проведенной к большей стороне треугольника, можно использовать формулу площади треугольника.
Формула площади треугольника: S = (1/2) * b * h, где S - площадь треугольника, b - длина основания треугольника, h - высота, проведенная к основанию треугольника.
В данном случае, наибольшая сторона треугольника равна 6 см. Пусть эта сторона является основанием треугольника.
Зная длины сторон треугольника, можно применить Теорему Пифагора, чтобы найти значения других двух сторон треугольника.
Теорема Пифагора: a^2 + b^2 = c^2, где a и b - катеты прямоугольного треугольника, c - гипотенуза.
Возьмем 4 и 5 см как катеты, а 6 см как гипотенузу. Подставим значения в формулу:
4^2 + 5^2 = 6^2
16 + 25 = 36
41 = 36
Уравнение неверно, следовательно, треугольник с такими сторонами не является прямоугольным.
Так как треугольник не является прямоугольным, высота, проведенная к большей стороне может быть найдена с использованием другой формулы.
Формула для нахождения высоты треугольника без использования площади: h = (2 * S) / b, где h - высота, S - площадь треугольника, b - длина основания треугольника.
Найдем площадь треугольника, используя формулу Герона:
p = (a + b + c) / 2, где p - полупериметр треугольника.
p = (4 + 5 + 6) / 2 = 15 / 2 = 7.5
S = √(p * (p - a) * (p - b) * (p - c))
S = √(7.5 * (7.5 - 4) * (7.5 - 5) * (7.5 - 6))
S = √(7.5 * 3.5 * 2.5 * 1.5)
S = √(92.8125)
S ≈ 9.631
Теперь, найдем высоту, проведенную к большей стороне:
h = (2 * S) / b = (2 * 9.631) / 6 = 19.262 / 6
h ≈ 3.210
Таким образом, высота, проведенная к большей стороне треугольника, примерно равна 3.210 см.
0
0


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili