Вопрос задан 27.10.2023 в 09:36. Предмет Математика. Спрашивает Ударцов Илья.

Персидский крестьянин завещал трем своим сыновьям 17 верблюдов . первый сын должен был получить 1/2

всех верблюдов, второй сын 1/3, а третий сын 1/9. Братья долго спорили по этому поводу. А проходивший мимо Ходжа Насреддин решил проблему,присоедеив к их верблюдам еще и своего. При этом братья смогли разделить верблюдов так, как наказал отец, причем Хаджа Насреддин получил своего верблюда обратно. Подумайте, как это могло получиться? задача на смекалку
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бодещенко Андрей.
1. Добавляет к 17 своего = 18.
2. Отдает от 18 1\9 = 2. Осталось 16.
3. Отдает от 16 1\2 исходного числа = 9 верблюдов. 16-9 = 7 - осталось верблюдов.
4. Забирает 1  своего и отдает 6 верблюдов (т.е. = 1\3 от 18) третьему.

Все получили верблюдов столько, сколько наказывал отец. И ходжа со своим остался.)))
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

The Problem of the Persian Peasant and Hodja Nasreddin

The problem of the Persian peasant and Hodja Nasreddin involves the division of 17 camels among three sons according to their father's will. The first son was to receive half of the camels, the second son one-third, and the third son one-ninth. The sons were unable to agree on how to divide the camels, but Hodja Nasreddin, who happened to pass by, was able to solve the problem. He joined his own camel to the group and, in doing so, allowed the brothers to divide the camels as their father had instructed. Hodja Nasreddin then took his camel back. Let's explore how this could have been achieved.

Solving the Problem

To solve this problem, we need to find a common denominator for the fractions 1/2, 1/3, and 1/9. The least common multiple (LCM) of 2, 3, and 9 is 18. Therefore, we can divide the 17 camels into 18 equal parts.

Since the first son was to receive half of the camels, which is 9 out of 18 parts, he would receive 9 camels. The second son was to receive one-third of the camels, which is 6 out of 18 parts, so he would receive 6 camels. The third son was to receive one-ninth of the camels, which is 2 out of 18 parts, so he would receive 2 camels.

After dividing the camels according to their father's will, there are 17 - (9 + 6 + 2) = 0 camels remaining. At this point, Hodja Nasreddin joins the group with his own camel, making the total number of camels 1. The camels are then divided among the three sons and Hodja Nasreddin according to their respective shares.

The first son, who was originally supposed to receive 9 camels, now receives 9 + 1 = 10 camels. The second son, who was supposed to receive 6 camels, now receives 6 + 1 = 7 camels. The third son, who was supposed to receive 2 camels, now receives 2 + 1 = 3 camels. Finally, Hodja Nasreddin, who joined the group with his own camel, receives his camel back, which makes a total of 1 camel.

In summary, the camels are divided as follows: - The first son receives 10 camels. - The second son receives 7 camels. - The third son receives 3 camels. - Hodja Nasreddin receives 1 camel.

Conclusion

By adding his own camel to the group and then dividing the camels according to their father's will, Hodja Nasreddin was able to solve the problem and ensure that each son received the number of camels specified by their father. This solution demonstrates the cleverness and problem-solving skills of Hodja Nasreddin.

Please let me know if there is anything else I can help you with!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос