
Вопрос задан 25.10.2023 в 18:04.
Предмет Математика.
Спрашивает Ломянский Егор.
Найдите значение производной функции у = 3х^4 +е^х в точке х0 = 0


Ответы на вопрос

Отвечает Гросс Лера.
Ответ:1
Пошаговое объяснение:производная 12х³+еˣ
в нуле 12*0³+е⁰=1



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти значение производной функции y = 3x^4 + e^x в точке x0 = 0, нам нужно взять производную этой функции по x и затем подставить значение x0 = 0.
Сначала найдем производную функции y = 3x^4 + e^x по x. Используя правила дифференцирования, получим:
y'(x) = d/dx (3x^4) + d/dx (e^x)
Для каждого слагаемого:
- Дифференцирование 3x^4 по x дает 12x^3.
- Дифференцирование e^x по x дает e^x.
Теперь соберем все вместе:
y'(x) = 12x^3 + e^x
Теперь мы можем найти значение производной в точке x0 = 0, подставив x = 0 в полученное выражение:
y'(0) = 12(0)^3 + e^0 y'(0) = 0 + 1 y'(0) = 1
Таким образом, значение производной функции y = 3x^4 + e^x в точке x0 = 0 равно 1.


Похожие вопросы
Топ вопросов за вчера в категории Математика

Математика 12

Математика 60

Математика 771

Математика 65

Математика 23
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili