
Sin^2(7п/2+х)-sin2x=0


Ответы на вопрос

Ответ:
Пошаговое объяснение:
2*sinx*cosx=cosx
s*sinx*cosx-cosx=0
cosx*(2*sinx-1)=0
cosx=0 или sinx=1/2
x=Pi/2+Pi*n;
x=((-1)^m)*(7*Pi/6)+Pi*m
-7*Pi/2;-17*Pi/6



To solve the equation sin^2(7π/2 + x) - sin(2x) = 0, you can follow these steps:
- Use the trigonometric identity sin^2(θ) = (1 - cos(2θ))/2 to rewrite sin^2(7π/2 + x):
sin^2(7π/2 + x) = (1 - cos(2(7π/2 + x)))/2
- Simplify the expression inside the cosine:
cos(2(7π/2 + x)) = cos(7π + 2x)
Since cos(7π) = -1 and cos(2x) = cos(-2x), the expression becomes:
-1 * cos(-2x) = cos(-2x)
- Substitute this simplified expression back into the original equation:
(1 - cos(-2x))/2 - sin(2x) = 0
- Multiply both sides of the equation by 2 to get rid of the fraction:
1 - cos(-2x) - 2sin(2x) = 0
- Rearrange the terms:
1 - 2sin(2x) - cos(-2x) = 0
- Use the identity cos(-θ) = cos(θ) to simplify the equation:
1 - 2sin(2x) - cos(2x) = 0
- Now, you have a quadratic equation in terms of sin(2x):
2sin(2x) + cos(2x) - 1 = 0
- To solve for sin(2x), you can use a substitution. Let y = sin(2x), so the equation becomes:
2y + cos(2x) - 1 = 0
- Solve for y:
2y + cos(2x) = 1
2y = 1 - cos(2x)
y = (1 - cos(2x))/2
- Now that you have found y, substitute sin(2x) back in:
sin(2x) = (1 - cos(2x))/2
- To solve for x, you can use trigonometric identities. First, square both sides:
sin^2(2x) = (1 - cos(2x))^2/4
- Now, use the identity sin^2(θ) = 1 - cos^2(θ) to rewrite sin^2(2x):
1 - cos^2(2x) = (1 - cos(2x))^2/4
- Multiply both sides by 4 to eliminate the fraction:
4 - 4cos^2(2x) = (1 - cos(2x))^2
- Expand the right side:
4 - 4cos^2(2x) = 1 - 2cos(2x) + cos^2(2x)
- Rearrange the terms and simplify:
4cos^2(2x) - 2cos(2x) - 3 = 0
- Now, you have a quadratic equation in terms of cos(2x). You can solve for cos(2x) using the quadratic formula:
cos(2x) = [2 ± √(2^2 - 4 * 4 * (-3))] / (2 * 4)
cos(2x) = [2 ± √(4 + 48)] / 8
cos(2x) = [2 ± √52] / 8
cos(2x) = (1 ± √13) / 4
- Now, you can find the values of 2x by taking the inverse cosine of the solutions:
2x = cos^(-1)((1 + √13)/4) and 2x = cos^(-1)((1 - √13)/4)
- Finally, solve for x by dividing both sides by 2:
x = (1/2)cos^(-1)((1 + √13)/4) and x = (1/2)cos^(-1)((1 - √13)/4)
These are the solutions for the equation sin^2(7π/2 + x) - sin(2x) = 0 in terms of x.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili