Вопрос задан 01.08.2023 в 06:55. Предмет Математика. Спрашивает Ляхов Никита.

если увеличить длину прямоугольника на 80% и ширину на 10%,то насколько увеличиться площадь

прямоугольника
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лызанець Миша.
Пусть а - длина прямоугольника, а b - его ширина, тогда площадь прямоугольника
S=ab
 
если длину увеличить на 20%, то она будет равна a*(100+20/100)=1.2 a
 
если ширину увеличить на 10%, то она будет равна b*(100+10/100)=1.1 b
 
тогда новая площадь прямоугольника S' =1.2 a*1.1 b=1.32 ab
 
S - 100%
S' - x
 
x=S' *100%/S=1.32 ab/ (ab)*100%=132 %
 
132%-100%=32%
ответ: площадь увеличится на 32 %

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, давайте предположим, что исходная длина прямоугольника равна L, а исходная ширина равна W.

Когда длину увеличивают на 80%, она станет равной L + 0.8 * L = 1.8 * L. Когда ширину увеличивают на 10%, она станет равной W + 0.1 * W = 1.1 * W.

Теперь мы можем вычислить новую площадь прямоугольника:

Новая площадь = новая длина * новая ширина Новая площадь = 1.8 * L * 1.1 * W Новая площадь = 1.98 * L * W

Таким образом, площадь прямоугольника увеличится на 98% (приближенно) или на 0.98 раза.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос