
Y'''+2y''-y'=3x^2+14x+11


Ответы на вопрос





To solve the given third-order linear homogeneous differential equation:
bashy''' + 2y'' - y' = 3x^2 + 14x + 11
We first need to find the complementary solution by solving the associated homogeneous equation:
bashy''' + 2y'' - y' = 0
Once we have the complementary solution, we can find a particular solution to the original non-homogeneous equation using the method of undetermined coefficients or variation of parameters.
Step 1: Find the Complementary Solution
The characteristic equation for the homogeneous equation is:
r^3 + 2r^2 - r = 0
Now, we solve the characteristic equation:
scssr(r^2 + 2r - 1) = 0
Using either the quadratic formula or factoring, we can find the roots of the characteristic equation:
makefiler1 = 0 r2 = (-2 + √(2^2 - 4*(-1))) / 2 r2 = (-2 + √(4 + 4)) / 2 r2 = (-2 + √8) / 2 r2 = (-2 + 2√2) / 2 r2 = -1 + √2 r3 = (-2 - √(2^2 - 4*(-1))) / 2 r3 = (-2 - √(4 + 4)) / 2 r3 = (-2 - √8) / 2 r3 = (-2 - 2√2) / 2 r3 = -1 - √2
The complementary solution is a linear combination of the form:
scssy_c = C1 * e^(r1 * x) + C2 * e^(r2 * x) + C3 * e^(r3 * x)
where C1, C2, and C3 are constants to be determined based on initial or boundary conditions.
Step 2: Find a Particular Solution
For the particular solution, we'll assume it has a form similar to the right-hand side of the non-homogeneous equation:
makefiley_p = Ax^2 + Bx + C
where A, B, and C are constants to be determined.
Now, we find the derivatives of y_p:
bashy_p' = 2Ax + B
y_p'' = 2A
y_p''' = 0
Substitute the derivatives of y_p into the non-homogeneous equation:
scss0 + 2(2A) - (2Ax + B) = 3x^2 + 14x + 11
Simplify:
css4A - 2Ax - B = 3x^2 + 14x + 11
Now, equate the coefficients of like powers of x on both sides:
css-2A = 3 => A = -3/2
4A - B = 14 => B = 4A - 14 = 4 * (-3/2) - 14 = -6 - 14 = -20
Therefore, the particular solution is:
makefiley_p = (-3/2)x^2 - 20x + C
Step 3: General Solution
Now, combine the complementary solution and the particular solution to obtain the general solution:
makefiley = y_c + y_p
scssy = C1 * e^(0) + C2 * e^((-1 + √2) * x) + C3 * e^((-1 - √2) * x) - (3/2)x^2 - 20x + C
Simplifying:
scssy = C1 + C2 * e^((-1 + √2) * x) + C3 * e^((-1 - √2) * x) - (3/2)x^2 - 20x + C
Where C1, C2, C3, and C are constants that can be determined using initial or boundary conditions, if provided.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili