
Решить систему: { x+y = 2π/3 { cos(x+y) + cos(x-y) = 1/2


Ответы на вопрос





To solve the system of equations:
- x + y = 2π/3
- cos(x + y) + cos(x - y) = 1/2
We can use trigonometric identities to simplify the second equation and then solve the system.
Step 1: Use the sum-to-product trigonometric identity for the second equation.
cos(A) + cos(B) = 2 * cos((A + B)/2) * cos((A - B)/2)
Applying this identity to equation (2):
cos(x + y) + cos(x - y) = 2 * cos((x + y + x - y)/2) * cos((x + y - x + y)/2) cos(x + y) + cos(x - y) = 2 * cos(x) * cos(y)
So now we have:
2 * cos(x) * cos(y) = 1/2
Step 2: Rewrite the first equation to solve for y:
y = 2π/3 - x
Step 3: Substitute the value of y from the first equation into the second equation:
2 * cos(x) * cos(2π/3 - x) = 1/2
Step 4: Use the cosine double-angle formula:
cos(2θ) = 2 * cos^2(θ) - 1
So, cos(2π/3 - x) = 2 * cos^2((2π/3 - x)/2) - 1
Step 5: Simplify:
cos(2π/3 - x) = 2 * cos^2(π/3 - x/2) - 1
Step 6: Substitute this back into the equation:
2 * cos(x) * [2 * cos^2(π/3 - x/2) - 1] = 1/2
Step 7: Now, solve for cos(x):
4 * cos(x) * cos^2(π/3 - x/2) - 2 * cos(x) = 1/2 4 * cos(x) * cos^2(π/3 - x/2) - 2 * cos(x) - 1/2 = 0
Step 8: Let's make a substitution to simplify the equation further:
Let a = π/3 - x/2
Then, cos(x) = cos(π/3 - 2a)
Step 9: Rewrite the equation in terms of 'a':
4 * cos(π/3 - 2a) * cos^2(a) - 2 * cos(π/3 - 2a) - 1/2 = 0
Step 10: Multiply everything by 2 to clear the fraction:
8 * cos(π/3 - 2a) * cos^2(a) - 4 * cos(π/3 - 2a) - 1 = 0
Step 11: Use the double-angle formula for cosine:
cos(π - θ) = -cos(θ)
So, cos(π/3 - 2a) = -cos(2a - π/3)
Step 12: Substitute this back into the equation:
8 * (-cos(2a - π/3)) * cos^2(a) - 4 * (-cos(2a - π/3)) - 1 = 0
Step 13: Distribute and simplify:
-8 * cos(2a - π/3) * cos^2(a) + 4 * cos(2a - π/3) - 1 = 0
Step 14: Rearrange the terms:
8 * cos(2a - π/3) * cos^2(a) - 4 * cos(2a - π/3) + 1 = 0
Step 15: Factor the equation:
(2 * cos(2a - π/3) - 1)^2 = 0
Step 16: Take the square root:
2 * cos(2a - π/3) - 1 = 0
Step 17: Solve for cos(2a - π/3):
2 * cos(2a - π/3) = 1
cos(2a - π/3) = 1/2
Step 18: Now find the value of (2a - π/3):
2a - π/3 = ±π/3 + 2nπ (where n is an integer)
Step 19: Solve for 'a':
2a = 2π/3 + π/3 + 2nπ 2a = π + 2nπ a = π/2 + nπ
Step 20: Find the corresponding values of 'x':
π/3 - x/2 = π/2 + nπ x/2 = -π/6 + nπ x = -π/3 + 2nπ
Step 21: Now, find the corresponding values of 'y':
y = 2π/3 - x y = 2π/3 - (-π/3 + 2nπ) y = 3π/3 + π/3 - 2nπ y = 4π/3 - 2nπ
So, the solutions to the system of equations are:
- x = -π/3 + 2nπ, y = 4π/3 - 2nπ
- x = -π/3 + 2nπ, y = 4π/3 - 2nπ, where n is an integer.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili