To verify the trigonometric identity sin(x)4+cos(x)4=cos2(2x)+41, we'll start by manipulating the right-hand side (RHS) to see if it matches the left-hand side (LHS) after simplification.
First, we'll simplify cos2(2x):
cos2(2x)=21+cos(4x)
Now, let's write the original identity again:
sin(x)4+cos(x)4=21+cos(4x)+41
Next, we'll try to express sin(x)4 and cos(x)4 in terms of cos(4x). Using trigonometric identities, we know that:
sin2(x)=21−cos(2x)
cos2(x)=21+cos(2x)
Now, to find sin(x)4 and cos(x)4, we square the expressions for sin2(x) and cos2(x):
sin4(x)=(21−cos(2x))2=41−2cos(2x)+cos2(2x)
cos4(x)=(21+cos(2x))2=41+2cos(2x)+cos2(2x)
Now, we'll substitute these values back into the original identity:
sin(x)4+cos(x)4=41−2cos(2x)+cos2(2x)+41+2cos(2x)+cos2(2x)
Notice that the −2cos(2x)+2cos(2x) terms cancel each other out, leaving us with:
sin(x)4+cos(x)4=21+cos2(2x)
Now, recall the expression for cos2(2x) from earlier:
cos2(2x)=21+cos(4x)
Substitute this back into the equation:
sin(x)4+cos(x)4=21+21+cos(4x)
To simplify further, combine the fractions:
sin(x)4+cos(x)4=42+1+cos(4x)
Finally, simplify the numerator:
sin(x)4+cos(x)4=43+cos(4x
0
0