
4 arccos(-√2/2)+arctg(-1)+arcsin(-1)=


Ответы на вопрос

Ответ:
Пошаговое объяснение:




To find the value of the expression 4 arccos(-√2/2) + arctg(-1) + arcsin(-1), we need to evaluate each individual term first:
arccos(-√2/2): The value of arccos(-√2/2) is the angle whose cosine is -√2/2. Since the cosine function is positive in the first and fourth quadrants, and -√2/2 is the cosine value of π/4 (45 degrees) in the second quadrant, the principal value of arccos(-√2/2) is π - π/4 = 3π/4 (135 degrees).
arctg(-1): The value of arctg(-1) is the angle whose tangent is -1. This corresponds to -π/4 (-45 degrees).
arcsin(-1): The value of arcsin(-1) is the angle whose sine is -1. Since the sine function is negative in the third and fourth quadrants, and -1 is the sine value of -π/2 (-90 degrees) in the fourth quadrant, the principal value of arcsin(-1) is -π/2 (-90 degrees).
Now, let's calculate the sum:
4 arccos(-√2/2) + arctg(-1) + arcsin(-1) = 4 * (3π/4) + (-π/4) + (-π/2)
Next, simplify the expression:
4 * (3π/4) = 3π (-π/4) + (-π/2) = -3π/4
Now, put everything together:
3π + (-3π/4) = (12π - 3π) / 4 = 9π / 4
So, the final value of the expression is 9π / 4, which is approximately 7.06858.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili