
Lim(1-cos(x))/(x*sin(x))=0 делить на 0x стремиться к 0


Ответы на вопрос

Ответ:
Пошаговое объяснение:



Let's evaluate the limit of the expression:
Lim(1-cos(x))/(x*sin(x)) as x approaches 0.
To compute this limit, we can use L'Hôpital's rule, which states that for an indeterminate form of 0/0 or ∞/∞, the limit of the ratio of the derivatives of the numerator and denominator will be the same as the original limit.
Taking the derivatives:
- Derivative of (1-cos(x)) with respect to x: d/dx(1-cos(x)) = sin(x).
- Derivative of (xsin(x)) with respect to x: d/dx(xsin(x)) = x*cos(x) + sin(x).
Now, let's apply L'Hôpital's rule:
Lim(1-cos(x))/(xsin(x)) as x approaches 0 = Lim(sin(x)/(xcos(x) + sin(x))) as x approaches 0.
Now, we can substitute x=0:
Lim(sin(0)/(0*cos(0) + sin(0))) = Lim(0/0).
We still have an indeterminate form of 0/0. So, we can apply L'Hôpital's rule once again:
- Derivative of sin(x) with respect to x: d/dx(sin(x)) = cos(x).
- Derivative of (xcos(x) + sin(x)) with respect to x: d/dx(xcos(x) + sin(x)) = cos(x) - x*sin(x).
Now, let's apply L'Hôpital's rule again:
Lim(sin(x)/(xcos(x) + sin(x))) as x approaches 0 = Lim(cos(x)/(cos(x) - xsin(x))) as x approaches 0.
Substitute x=0:
Lim(cos(0)/(cos(0) - 0*sin(0))) = Lim(1/1) = 1.
Therefore, the limit of (1-cos(x))/(x*sin(x)) as x approaches 0 is 1.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili