
Sin^2x=3cos^2x+sin2x


Ответы на вопрос

Ответ:
x₁=acrctg1/3+πn, n∈Z
x₂=3π/4+πk, k∈Z
Пошаговое объяснение:
sin²x=3cos²x+sin(2x)
Воспользуемся формулой sin 2x:
sin²x=3cos²x+2sin(x)*cos(x)
3cos²x+2sin(x)*cos(x)-sin²x=0
Разделим обе части уравнения на sin²x:
3ctg²x+2ctgx-1=0
Замена ctgx=t:
3t²+2t-1=0
D=4+4*3=16
t₁=(-2+4)/6=1/3
t₂=(-2-4)/6=-1
Обратная замена:
ctgx=1/3 ctgx=-1
Находим корни:
x₁=acrctg1/3+πn, n∈Z
x₂=3π/4+πk, k∈Z



To solve the equation sin^2(x) = 3cos^2(x) + sin(2x), we can use trigonometric identities and algebraic manipulations. Let's go step-by-step:
Step 1: Use the double angle identity for sine: sin(2x) = 2sin(x)cos(x)
The equation becomes: sin^2(x) = 3cos^2(x) + 2sin(x)cos(x)
Step 2: Use the Pythagorean identity: sin^2(x) + cos^2(x) = 1
Rearrange the equation: sin^2(x) = 1 - cos^2(x)
Step 3: Substitute the rearranged equation into the original equation:
1 - cos^2(x) = 3cos^2(x) + 2sin(x)cos(x)
Step 4: Move all the terms to one side of the equation:
1 - 3cos^2(x) - cos^2(x) - 2sin(x)cos(x) = 0
Step 5: Combine like terms:
1 - 4cos^2(x) - 2sin(x)cos(x) = 0
Step 6: Factor out common terms:
1 - 2cos(x)(2cos(x) + sin(x)) = 0
Now we have a factored equation. To solve for x, set each factor equal to zero and solve for cos(x):
- 2cos(x) + sin(x) = 0
Since we cannot directly solve for cos(x) in this equation, we'll use the Pythagorean identity again:
sin^2(x) + cos^2(x) = 1
Square the equation: sin^2(x) = 1 - cos^2(x)
Substitute this into the first equation: 2cos(x) - (1 - cos^2(x)) = 0
Simplify: 2cos(x) - 1 + cos^2(x) = 0
Rearrange and solve for cos(x): cos^2(x) + 2cos(x) - 1 = 0
Now, we have a quadratic equation in cos(x):
cos(x) = [-2 ± √(2^2 - 4(1)(-1))] / 2
cos(x) = [-2 ± √(4 + 4)] / 2
cos(x) = [-2 ± √8] / 2
cos(x) = [-2 ± 2√2] / 2
cos(x) = -1 ± √2
So, there are two solutions for cos(x):
- cos(x) = -1 + √2
- cos(x) = -1 - √2
Step 7: Solve for sin(x) using the Pythagorean identity:
sin^2(x) + cos^2(x) = 1
sin^2(x) + (-1 + √2)^2 = 1 sin^2(x) + (1 - 2√2 + 2) = 1 sin^2(x) - 2√2 + 3 = 1
sin^2(x) = 2√2 - 2
sin(x) = ±√(2√2 - 2)
Therefore, the solutions for sin(x) are:
- sin(x) = √(2√2 - 2)
- sin(x) = -√(2√2 - 2)
So, the final solution for the equation sin^2(x) = 3cos^2(x) + sin(2x) is:
- cos(x) = -1 + √2, sin(x) = √(2√2 - 2)
- cos(x) = -1 + √2, sin(x) = -√(2√2 - 2)
Please note that there may be some simplifications or errors in the above steps, so it's always good to double-check the solutions.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili