Вопрос задан 07.10.2023 в 12:24. Предмет Геометрия. Спрашивает Соловьёва Дарья.

В треугольнике ABC, угол С=90, sin A=√3/2. Найдите tg A

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жема Андрюха.

sin A = √3/2, следовательно, A = 60 градусам, из этого следует, что tg 60 градусов равен √3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения значения tg(A) в треугольнике ABC, где угол C равен 90 градусов и sin(A) = √3/2, можно использовать определение тангенса:

tg(A) = sin(A) / cos(A).

Мы уже знаем значение sin(A), но нам нужно найти cos(A). Для этого можно воспользоваться теоремой Пифагора:

sin^2(A) + cos^2(A) = 1.

Зная, что sin(A) = √3/2, мы можем найти cos(A):

(√3/2)^2 + cos^2(A) = 1, 3/4 + cos^2(A) = 1.

Теперь выразим cos^2(A):

cos^2(A) = 1 - 3/4, cos^2(A) = 4/4 - 3/4, cos^2(A) = 1/4.

Теперь найдем cos(A), извлекая квадратный корень:

cos(A) = √(1/4), cos(A) = 1/2.

Теперь у нас есть значения sin(A) и cos(A), и мы можем найти tg(A):

tg(A) = sin(A) / cos(A) = (√3/2) / (1/2) = (√3/2) * (2/1) = √3.

Итак, tg(A) = √3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос