
В правильной треугольной пирамиде SABC с основанием ABC известны ребра: AB=8√3, SC=17. Найдите
угол, образованный плоскостью основания и прямой AM, где M - точка пересечения медиан грани SBC/ (пожалуйста, с рисунком)

Ответы на вопрос

пусть точка K середина стороны BC.
AK- медиана/биссектриса/высота в равностороннем треугольнике ABC.
найдем AK:
----------------------
SK- медиана/биссектриса/высота в равнобедренном треугольнике SBC.
найдем SK:
по теореме пифагора:
(так как точка пересечения медиан делит их в отношении 2 к 1)
значит искомый угол равен:
что приблизительно равно 23,32701352...°




Ого, это звучит интересно! Давайте решим задачу.
Первым шагом давайте нарисуем пирамиду. Длина AB равна 8√3, а SC равно 17. Поскольку у нас треугольная пирамида, прямая AM будет медианой треугольника SBC. Давайте обозначим точку пересечения медиан как M.
Теперь, чтобы найти угол между плоскостью основания и прямой AM, давайте рассмотрим треугольник SAM. Мы знаем длины SA (высота пирамиды) и AM (медиана). Нам нужно найти угол между этими сторонами.
Мы можем использовать косинусное правило для треугольников:
Теперь давайте подставим известные значения. Поскольку треугольник SAM прямоугольный, .
Мы также знаем, что .
Теперь давайте подставим все значения и вычислим угол .


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili