
У прямокутному трикутнику ABC гіпотенуза AB дорівнює 30 см, а) катет ВС; 6) катет АС.


Ответы на вопрос

Ответ:
Катет АС дорівнює 12√6см за теоремою Піфагора.
Объяснение:
АС²=√АВ²-ВС².



У прямокутному трикутнику гіпотенуза (AB) і два катети (BC і AC) пов'язані за допомогою п'ятого теореми Евкліда, яка гласить, що сума квадратів довжин катетів дорівнює квадрату довжини гіпотенузи.
Маємо дані: Гіпотенуза AB = 30 см
Ми шукаємо катети BC і AC.
Застосуємо п'яту теорему Евкліда:
- BC^2 + AC^2 = AB^2
- BC^2 + AC^2 = 30^2
- BC^2 + AC^2 = 900
Тепер ми можемо розв'язати цю систему рівнянь для катетів BC і AC.
a) Катет BC: Припустимо, що BC = x. Тоді ми можемо записати рівняння: x^2 + AC^2 = 900
b) Катет AC: Припустимо, що AC = y. Тоді ми можемо записати рівняння: BC^2 + y^2 = 900
Ми маємо два рівняння з двома невідомими (x і y), і ми не можемо визначити їх значення, не знаючи додаткової інформації про трикутник (наприклад, відношення сторін або кутові значення).
Отже, ми не можемо точно визначити довжини катетів BC і AC без додаткової інформації.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili