Вопрос задан 24.09.2023 в 00:40. Предмет Геометрия. Спрашивает Капачёва Ксения.

Дано рівнобедрений ∆-ка. АВС. Один із зовнішніх кутів ∆-ка. =124°. Знайти кути ∆ АВС. (Розглянути 2

випадки) допоможіть будь ласка здавати завтра
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мисик Юля.

Якщо ми шукаємо вершинні кути ∆А та ∆В:

Нехай ∠C є зовнішнім кутом. Відомо, що сума зовнішніх кутів ∆-ка дорівнює 360°. Тому:

∠C + ∠A + ∠B = 360°

Замість ∠C використовуємо відоме значення: ∠C = 124°.

124° + ∠A + ∠B = 360°

∠A + ∠B = 360° - 124°

∠A + ∠B = 236°

Оскільки рівнобедрений трикутник має рівні кути при основі, можемо припустити, що ∠A = ∠B = x. Тоді:

2x = 236°

x = 236° / 2

x = 118°

Таким чином, вершинні кути ∆А та ∆В дорівнюють 118°.

Якщо ми шукаємо основний кут ∆С:

Оскільки ∆АВС - рівнобедрений трикутник, то ∠A = ∠B. Знаючи, що ∠C є зовнішнім кутом, можемо скористатися властивістю зовнішніх кутів ∆-ка:

∠C = ∠A + ∠B

Замість ∠A та ∠B використовуємо x:

124° = x + x

124° = 2x

x = 124° / 2

x = 62°

Таким чином, основний кут ∆С дорівнює 62°.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Задачу можна розв'язати наступним чином:

Даний рівнобедрений трикутник ABC, де AB = AC. Один із зовнішніх кутів трикутника - нехай це буде кут BAC - дорівнює 124 градуси.

Перший випадок: Кут BAC дорівнює 124 градуси. Також, оскільки ABC - рівнобедрений трикутник, то кути B і C дорівнюють одне одному. Позначимо їх як x градусів. Тоді кут BAC + кут B + кут C = 180 градусів (сума кутів в трикутнику). Знаючи значення кута BAC (124 градуси) і кути B і C (x градусів), ми можемо записати рівняння:

124 + x + x = 180

Розв'яжемо це рівняння для x:

2x + 124 = 180

2x = 180 - 124 2x = 56

x = 56 / 2 x = 28

Отже, в першому випадку кути трикутника ABC мають наступні значення: ∠BAC = 124 градуси, ∠ABC = ∠ACB = 28 градусів.

Другий випадок: Якщо кут BAC дорівнює 124 градуси, то інші два кути трикутника дорівнюють x градусів кожен, оскільки вони рівні. Знову ж таки, ми можемо скористатися рівнянням для суми кутів в трикутнику:

124 + x + x = 180

2x + 124 = 180

2x = 180 - 124 2x = 56

x = 56 / 2 x = 28

Отже, в другому випадку також кути трикутника ABC мають наступні значення: ∠BAC = 124 градуси, ∠ABC = ∠ACB = 28 градусів.

Отже, незалежно від випадку, кути трикутника ABC мають такі значення: ∠BAC = 124 градуси, ∠ABC = ∠ACB = 28 градусів.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос