
Вопрос задан 19.09.2023 в 08:37.
Предмет Геометрия.
Спрашивает Федів Антон.
1)в шаре на расстояние 4 см проведено сечение площадь которого равна 9пи найти объем шара.
2)прямоугольный треугольник с катетами корень из двух и корень из 7 вращается вокруг гипотенузы. найти объем полученного тела вращения

Ответы на вопрос

Отвечает Родиков Алексей.
1.
Сечение шара - круг с центром А.
АВ = r - радиус сечения.
Sсеч = πr²
9π = πr²
r = 3 см.
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен сечению.
ОА перпендикулярен сечению, значит ОА = 4 см - расстояние от центра шара до сечения.
ОВ = R - радиус шара.
ΔАВО: ∠ОАВ = 90°, по теореме Пифагора
R = √(ОА² + АВ²) = √(16 + 9) = 5 см
V = 4/3 πR³ = 4/3 π · 25 = 100π/3 см³
2.
Пусть в ΔАВС ∠С = 90°, АВ - гипотенуза.
При вращении треугольника вокруг гипотенузы получается два конуса с общим основанием.
Радиус основания R равен высоте треугольника СН,
Образующие конусов соответственно √2 и √7.
Высоты h₁ = AH, h₂ = BH.
V = 1/3 πR²h₁ + 1/3 πR²h₂ = 1/3 πR² (h₁ + h₂) = 1/3 πR²·AB
По теореме Пифагора:
АВ = √(АС² + ВС²) = √(7 + 2) = 3
R = СН = АС · ВС / АВ = √7 · √2 / 3 = √14/3
V = 1/3 π · 14/9 · 3 = 14π/9
Сечение шара - круг с центром А.
АВ = r - радиус сечения.
Sсеч = πr²
9π = πr²
r = 3 см.
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен сечению.
ОА перпендикулярен сечению, значит ОА = 4 см - расстояние от центра шара до сечения.
ОВ = R - радиус шара.
ΔАВО: ∠ОАВ = 90°, по теореме Пифагора
R = √(ОА² + АВ²) = √(16 + 9) = 5 см
V = 4/3 πR³ = 4/3 π · 25 = 100π/3 см³
2.
Пусть в ΔАВС ∠С = 90°, АВ - гипотенуза.
При вращении треугольника вокруг гипотенузы получается два конуса с общим основанием.
Радиус основания R равен высоте треугольника СН,
Образующие конусов соответственно √2 и √7.
Высоты h₁ = AH, h₂ = BH.
V = 1/3 πR²h₁ + 1/3 πR²h₂ = 1/3 πR² (h₁ + h₂) = 1/3 πR²·AB
По теореме Пифагора:
АВ = √(АС² + ВС²) = √(7 + 2) = 3
R = СН = АС · ВС / АВ = √7 · √2 / 3 = √14/3
V = 1/3 π · 14/9 · 3 = 14π/9




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
- Для нахождения объема шара по известной площади сечения, нам потребуется формула для вычисления объема шара по площади сечения. Площадь сечения можно выразить через радиус шара.
Площадь сечения шара: где - радиус сечения.
Мы знаем, что площадь сечения равна , следовательно:
Решая это уравнение относительно , мы получаем см.
Теперь мы можем найти объем шара, используя формулу:
Подставляя значение см, мы получаем:
- Объем тела, полученного вращением прямоугольного треугольника вокруг гипотенузы, можно найти с использованием метода цилиндрических колец. Первый шаг - найти выражение для объема элементарного кольца.
Обозначим длины катетов как и . Обозначим также длину гипотенузы как , которая равна .
Рассматриваемое кольцо имеет радиус и толщину . Радиус этого кольца будет , где - координата на оси (расстояние от начала координат до текущего среза). Таким образом, объем элементарного кольца можно выразить как .
Теперь интегрируем этот объем по оси от до (длина гипотенузы):
Решим этот интеграл:
Теперь подставим :


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili