
1) (1+ctg^2альфа)•sin^2альфа-cos^2 альфа 2) (1+tg^2alfa)•cos^2alfa-sin^2alfa


Ответы на вопрос






To simplify the given expressions, we'll use trigonometric identities to rewrite them in a more manageable form.
- Simplifying (1+ctg^2α)•sin^2α - cos^2α:
First, we'll express cotangent (ctg) in terms of sine and cosine:
cot(α) = 1/tan(α) = cos(α)/sin(α)
Now, let's rewrite the expression:
(1 + cot^2(α))•sin^2(α) - cos^2(α)
Substitute cot(α):
(1 + (cos(α)/sin(α))^2)•sin^2(α) - cos^2(α)
Simplify the cotangent expression:
(1 + cos^2(α)/sin^2(α))•sin^2(α) - cos^2(α)
Now, we can combine the terms:
(sin^2(α) + cos^2(α))•sin^2(α) - cos^2(α)
Using the Pythagorean identity sin^2(α) + cos^2(α) = 1:
(1)•sin^2(α) - cos^2(α)
Finally, the simplified expression is:
sin^2(α) - cos^2(α)
- Simplifying (1+tg^2α)•cos^2α - sin^2α:
First, we'll express tangent (tg) in terms of sine and cosine:
tan(α) = sin(α)/cos(α)
Now, let's rewrite the expression:
(1 + tan^2(α))•cos^2(α) - sin^2(α)
Substitute tan(α):
(1 + (sin(α)/cos(α))^2)•cos^2(α) - sin^2(α)
Simplify the tangent expression:
(1 + sin^2(α)/cos^2(α))•cos^2(α) - sin^2(α)
Now, we can combine the terms:
(cos^2(α) + sin^2(α))•cos^2(α) - sin^2(α)
Using the Pythagorean identity sin^2(α) + cos^2(α) = 1:
(1)•cos^2(α) - sin^2(α)
Finally, the simplified expression is:
cos^2(α) - sin^2(α)
In both cases, we end up with expressions that involve trigonometric identities and are not further reducible without knowing the specific value of α.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili