Вопрос задан 21.07.2023 в 14:25. Предмет Геометрия. Спрашивает Кенжебек Дария.

Дана правильная треугольная призма, сторона основания a=10 см, высота призмы h=15 см. найти площадь

боковой и площадь полной поверхности? Пожалуйста, полностью распишите! ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Долкан Богдан.

Площадь боковой поверхности равна произведению периметра основания призмы на высотту призмы, то есть 15*(10+10+10)= 450 (см2)

Площадь полной поверхности призмы равна сумме площади боковой поверхности и 2 площади основапния призмы. то есть необходимо для начала найти площадь основания

Площадь основания равна : √3*100\4=25√3 (см2)

Площадь полной поверхности равна: 450+ 50√3(см2)

Ответ: 450 см2, 450+50√3 см2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Хорошо, давайте найдем площадь боковой поверхности и площадь полной поверхности данной правильной треугольной призмы.

Площадь боковой поверхности (Sб) для правильной треугольной призмы вычисляется, как сумма площадей боковых поверхностей трех равносторонних треугольников, составляющих боковые стороны призмы.

Для вычисления площади боковой поверхности нам понадобится найти боковую высоту треугольника (hб), которая соответствует высоте призмы (h).

  1. Найдем боковую высоту (hб) треугольника: hб = √(a^2 - (a/2)^2) hб = √(10^2 - (10/2)^2) hб = √(100 - 25) hб = √75 hб ≈ 8.66 см

  2. Теперь, когда у нас есть боковая высота треугольника, можем найти площадь боковой поверхности (Sб): Sб = (a * hб) / 2 * 3 Sб = (10 * 8.66) / 2 * 3 Sб = 86.6 / 2 * 3 Sб = 43.3 * 3 Sб ≈ 129.9 см²

Теперь перейдем к вычислению площади полной поверхности (Sп) правильной треугольной призмы. Для этого нам необходимо учесть площадь оснований и боковую поверхность:

  1. Площадь основания (Sосн) для одного треугольника: Sосн = (a * hб) / 2 Sосн = (10 * 8.66) / 2 Sосн = 86.6 / 2 Sосн = 43.3 см²

  2. Площадь оснований для всех трех треугольников: Sосн_всего = Sосн * 3 Sосн_всего = 43.3 * 3 Sосн_всего ≈ 129.9 см²

  3. Площадь полной поверхности (Sп) призмы: Sп = Sб + Sосн_всего Sп ≈ 129.9 + 129.9 Sп ≈ 259.8 см²

Итак, ответ: площадь боковой поверхности составляет около 129.9 см², а площадь полной поверхности равна примерно 259.8 см².

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос