Вопрос задан 19.07.2023 в 11:25. Предмет Геометрия. Спрашивает Смирнова Софья.

разность оснований равнобедренной трапеции описанной около окружности равна 18 см а периметр равен

60 см. найдите стороны трапеции​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Волченкова Полина.

Ответ:

У трапеции, описанной около окружности, сумма длин оснований а и с равна сумме длин боковых сторон b (равнобедренная трапеция): а+с=2b. По условию с-а=18 и Р=60=а+с+2b. Подставляем 60=2b+2b, b=15. с=18+а, а+18+а=2*15, 2а=12, а=6. с=18+6=24. Ответ: основания - 6 и 24, боковые - по 15.

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим основания равнобедренной трапеции как "a" и "b" (где a > b) и её высоту (т.е., расстояние между основаниями) как "h". Пусть "r" будет радиусом описанной около трапеции окружности.

Условие "разность оснований равнобедренной трапеции описанной около окружности равна 18 см" можно выразить уравнением:

a - b = 18 ...(1)

Также, у нас есть информация о периметре трапеции, который составляет 60 см:

Периметр трапеции = a + b + 2 * h = 60 ...(2)

Далее, мы знаем, что описанная окружность равнобедренной трапеции проходит через все её вершины. В этом случае, сумма длин двух дуг (по периметру) между парой вершин равна длине отрезка между этими вершинами. Таким образом, можно записать еще одно уравнение:

a + 2r = b + 2r + 18 ...(3)

Теперь давайте решим эту систему уравнений (1), (2) и (3) для нахождения сторон трапеции:

(1) Мы знаем, что a - b = 18, так что a = b + 18.

(2) Подставим значение a в уравнение для периметра:

(b + 18) + b + 2h = 60

2b + 18 + 2h = 60

2b + 2h = 42

b + h = 21

(3) Теперь подставим значение a в уравнение для длины дуги:

(b + 18) + 2r = b + 2r + 18

b + 18 = b + 18

Это уравнение верно, но оно не дает нам дополнительной информации.

Таким образом, у нас два уравнения:

b + h = 21 ...(4)

a - b = 18 ...(5)

Теперь найдем "b" и "h" из этих уравнений:

Из уравнения (4): b = 21 - h

Теперь подставим значение "b" в уравнение (5):

a - (21 - h) = 18

a - 21 + h = 18

a + h = 39

Теперь у нас есть система уравнений:

a + h = 39

b + h = 21

Решим эту систему, вычтем второе уравнение из первого:

(a + h) - (b + h) = 39 - 21

a - b = 18

Мы получили уравнение (1), что означает, что наши предположения верны.

Теперь, чтобы найти значения "a", "b" и "h", нам не хватает одного уравнения. Например, вы можете уточнить, каким образом трапеция описана около окружности, или предоставить еще одно уравнение, связывающее радиус окружности с основаниями трапеции. Если у нас будет еще одно уравнение, мы сможем однозначно найти стороны трапеции.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос