Вопрос задан 18.07.2023 в 03:25. Предмет Геометрия. Спрашивает Золотарёва Алена.

найдите периметр прямоугольника,если биссектриса одного из угла делят одну противоположность сторон

из отрезка 24,5 и 7,4 см.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Олина Инга.

Ответ:

70 САНТИМЕТРОВ

Объяснение:

Обозначит параллелограмм ABCD, биссектрису угла B - BK.

BK - биссектриса ⇒ ∠ABK=∠CBK. ∠CBK=∠AKB как накрест лежащие при параллельных прямых BC и AD и секущей BK. ⇒ ∠ABK=∠AKB ⇒ ΔABK - равнобедренный ⇒ AB=AK=14

Стороны параллелограмма попарно равны ⇒ AD=BC=24+7=31; AB=CD=14

P=24*2+21*2=28+42=70см

Ответ: 70см

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи нам понадобятся некоторые геометрические свойства прямоугольника.

Дано, что биссектриса одного из углов прямоугольника делит одну из противоположных сторон на два отрезка длиной 24,5 см и 7,4 см.

Пусть стороны прямоугольника будут обозначены как a и b, где a - это сторона, которую делит биссектриса, а b - противоположная сторона.

По свойству биссектрисы треугольника, мы можем сказать, что отношение длины отрезков, на которые она делит сторону, равно отношению длин смежных сторон треугольника. То есть:

a / b = 24,5 / 7,4

Мы можем использовать это уравнение, чтобы выразить a через b:

a = (24,5 / 7,4) * b

Теперь, чтобы найти периметр прямоугольника, мы можем использовать формулу периметра:

Периметр = 2 * (a + b)

Заменяя значение a из предыдущего уравнения, получаем:

Периметр = 2 * ((24,5 / 7,4) * b + b)

Периметр = 2 * (31,756756756756756756756756756757 * b)

Периметр = 63,513513513513513513513513513514 * b

Таким образом, периметр прямоугольника выражается как 63,513513513513513513513513513514, умноженное на длину стороны b.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос