Вопрос задан 05.07.2023 в 19:59. Предмет Геометрия. Спрашивает Васьков Иван.

!!! СРОЧНО ПОМОГИТЕ ПОЖАЛУЙСТА!!!! В основании прямой призмы лежит прямоугольный треугольник с

катетами 5см и 12см. Вычислите полную поверхность призмы, если ее объем равен 1200см². Пожалуйста подробнее. Это экзаменационное задание... Очень нужно. Пожалуйста!!!!! Даю 20б.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фахретдинова Илина.

V=Sосн*h

Sосн=a*b/2 (половина произведения катетов)

Sосн=5*12/2=30 см²

h=1200/30=40 cм

Гипотенуза основания c = √(5²+12²)=√(25+144)=√169=13 см

Боковая поверхность состоит из 3-х прямоугольников.

Sбок=h(a+b+c)=40(5+12+13)=40*30=1200 cм²

Sполн=Sбок + 2Sосн=1200+2*30=1260 см².

Ответ: 1200 и 1260 см².


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам решить это задание! Давайте разберемся.

  1. Начнем с вычисления площади основания прямой призмы. Основание призмы - это прямоугольный треугольник с катетами 5 см и 12 см. Площадь прямоугольного треугольника можно вычислить по формуле: S_осн = (a * b) / 2, где "a" и "b" - длины катетов.

    S_осн = (5 см * 12 см) / 2 = 60 см².

  2. По условию, объем призмы равен 1200 см³. Объем прямой призмы можно вычислить по формуле: V = S_осн * h, где "S_осн" - площадь основания, а "h" - высота призмы.

    1200 см³ = 60 см² * h.

    Теперь найдем высоту "h":

    h = 1200 см³ / 60 см² = 20 см.

  3. Полная поверхность прямой призмы состоит из площади её двух оснований и площади боковой поверхности.

    S_бок = периметр_осн * h.

    Периметр прямоугольного треугольника (поскольку один из катетов является гипотенузой): периметр_осн = 5 см + 12 см + √(5² + 12²) см = 5 см + 12 см + 13 см = 30 см.

    S_бок = 30 см * 20 см = 600 см².

  4. Теперь найдем полную поверхность призмы, сложив площади её двух оснований и боковой поверхности:

    S_полная = 2 * S_осн + S_бок = 2 * 60 см² + 600 см² = 120 см² + 600 см² = 720 см².

Таким образом, полная поверхность прямой призмы равна 720 см².

Пожалуйста, не стесняйтесь задавать дополнительные вопросы, если что-то не ясно!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос