Вопрос задан 28.06.2023 в 19:00. Предмет Геометрия. Спрашивает Смирнов Евгений.

1. В которых ответах величина данного выражения равна 1? sin0° sin90° cos90° cos180° −sin90°

sin245°+cos245° sin245°−cos245° −cos180° 2. Которые из ниже данных ответов были бы равны с cos45°? sin135° tg45° cos135° tg180° −cos135° sin120° −cos120° 8–√4
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Турганбек Алмат.

Ответ:

1) \: sin \: 90^{ \circ}  \\ sin \: ^{2} \:  45^{ \circ} + cos ^{2}  \: 45^{ \circ} \\  - cos \: 180^{ \circ}

2) \: sin \: 135^{ \circ} \\  - cos \: 135^{ \circ} \\  \frac{ \sqrt{8} }{4}

Объяснение:

  • Вспоминаем тригонометрическую таблицу значений:

sin \: 0^{ \circ}  = 0 \\ sin  \: 90^{ \circ} = 1 \\ cos \: 90^{ \circ} = 0 \\ cos \: 180^{ \circ} =  - 1 \\  - (sin \: 90^{ \circ}) =  - 1 \\ sin ^{2}  \: 45^{ \circ} + cos ^{2}  \: 45^{ \circ} = 1 \\ sin ^{2}  \: 45 ^{ \circ} -  {cos}^{2} \: 45 ^{ \circ}  \ne1 \\  - (cos \: 180^{ \circ} )=  - ( - 1) = 1

  • Раз cos 45° = √2/2 => ищем нужное значение

sin \: 135^{ \circ} =  \frac{ \sqrt{2} }{2}  \\ tg \: 45^{ \circ} =   1 \\ cos \: 135^{ \circ} =   -  \frac{ \sqrt{2} }{2}  \\ tg \: 180^{ \circ} = 0 \\  - cos \: 135^{ \circ} =  - (cos \: 135^{ \circ}) =  - (  - \frac{  \sqrt{2} }{2} ) =  \frac{ \sqrt{2} }{2}  \\ sin \: 120^{ \circ} =  \frac{ \sqrt{3} }{2}  \\  - cos \: 120^{ \circ} =  - (cos \: 120^{ \circ}) =  -(   -  \frac{1}{2}) =  \frac{1}{2}   \\  \frac{ \sqrt{8} }{4}  =  \frac{2 \sqrt{2} }{4}  =  \frac{ \sqrt{2} }{2}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте разберемся с каждым из этих выражений поочередно:

  1. Величина данного выражения равна 1, если оно равно 1. Посмотрим на выражение:

    sin0° * sin90° * cos90° * cos180° - sin90° * sin245° + cos245° * sin245° - cos245° - cos180°

    Мы можем упростить его:

    0 * 1 * 0 * (-1) - 1 * (-1) + (-1) * 1 - (-1) - (-1)

    Теперь вычислим:

    0 + 1 - 1 + 1 + 1 = 2

    Ответ: Величина этого выражения не равна 1.

  2. Теперь рассмотрим выражения, которые были бы равны с cos45°:

    sin135°, tg45°, cos135°, tg180°, -cos135°, sin120°, -cos120°, 8 - √4

    cos45° равен √2/2. Поэтому, чтобы выражение было равно cos45°, оно должно быть равно √2/2.

    Рассмотрим каждое выражение:

    • sin135° = √2/2 (так как sin(45° + 90°) = sin(135°) = √2/2)
    • tg45° = 1 (так как tg(45°) = 1)
    • cos135° = -√2/2 (так как cos(45° + 90°) = cos(135°) = -√2/2)
    • tg180° не существует, так как tg(180°) бесконечно большое.
    • -cos135° = √2/2 (отрицательное значение cos135°)
    • sin120° = √3/2 (так как sin(60° + 60°) = sin(120°) = √3/2)
    • -cos120° = -1/2 (так как cos(60° + 60°) = cos(120°) = -1/2)
    • 8 - √4 = 8 - 2 = 6

    Итак, только sin135° и -cos135° равны cos45°, то есть √2/2.

Ответ: Выражение sin135° и -cos135° равны cos45°, а все остальные выражения не равны cos45°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос