Вопрос задан 25.06.2023 в 18:56. Предмет Геометрия. Спрашивает Панчук Діана.

Задание 1. Проведите исследование. Постройте треугольник со сторонами:а)7 см, 12 см, 9 см; Вывод:

________________________________________________б) 7см, 14 см, 7 см; Вывод: _________________________________________________в) 5 см, 16 см, 7 см. Вывод: ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Васильев Севастьян.
Любая сторона треугольника должна быть меньше суммы двух других, иначе треугольник не существует.
А) соответствует, такой треугольник существует.
Б) сторона 14 см.равна сумме двух других, в таком случае стороны должны быть на одной прямой, а такой треугольник не существует.
В)сторона 16 см.больше суммы двух других, такой треугольник не существует.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для каждого из трех случаев (а, б, в) проведем исследование и определим, можно ли построить треугольник с данными сторонами. Для этого воспользуемся неравенством треугольника, которое гласит, что сумма длин любых двух сторон треугольника всегда должна быть больше длины третьей стороны.

а) Стороны: 7 см, 12 см, 9 см

7 + 9 = 16, что меньше 12 7 + 12 = 19, что больше 9 9 + 12 = 21, что больше 7

В данном случае, сумма длин двух меньших сторон (7 и 9) равна 16, что меньше длины третьей стороны (12). Поэтому нельзя построить треугольник с такими сторонами.

б) Стороны: 7 см, 14 см, 7 см

7 + 7 = 14, что равно 14 7 + 14 = 21, что больше 7 7 + 7 = 14, что равно 14

В данном случае, сумма длин двух меньших сторон (7 и 7) равна 14, что равно длине третьей стороны (14). Это означает, что можно построить треугольник, но он будет вырожденным, то есть будет иметь нулевую площадь.

в) Стороны: 5 см, 16 см, 7 см

5 + 7 = 12, что меньше 16 5 + 16 = 21, что больше 7 7 + 16 = 23, что больше 5

В данном случае, сумма длин двух меньших сторон (5 и 7) равна 12, что меньше длины третьей стороны (16). Поэтому нельзя построить треугольник с такими сторонами.

Итак, выводы для каждого случая:

а) Нельзя построить треугольник с такими сторонами (7 см, 12 см, 9 см).

б) Можно построить вырожденный треугольник с такими сторонами (7 см, 14 см, 7 см).

в) Нельзя построить треугольник с такими сторонами (5 см, 16 см, 7 см).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос