 
Вопрос задан 23.07.2020 в 15:29.
Предмет Алгебра.
Спрашивает Рудік Андрій.
Известно, что графики функций y = x^ 2 + p и y = 2x − 2 имеют ровно одну общую точку.
Определите координаты этой точки. Постройте графики заданных функций в одной системе координат. 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Gerasimov Bogdan.
                
     1 способ:
{y=x²+p
{y=2x-2
x²+p=2x-2
x²-2x+2+p=0
D=(-2)²-4*1*(2+p)=4-8-4p=-4-4p
Для того, чтобы уравнение имело 1 решение, дискриминант должен быть равен 0, значит:
-4-4р=0
-4р=4
р=-1
{y=x²-1
{y=2x-2
x²-1=2x-2
x²-1-2x+2=0
x²-2x+1=0
x₁+x₂=2
x₁*x₂=1
x₁=1
x₂=1
x=1
y=x²-1=1-1
y=0
Точка пересечения графиков: (1;0)
2 способ:
y=x²+p - парабола, у=2х-2 - касательная к параболе
Производная в точке х₀ равняется угловоvу коэффициэнту касательной
f`(x)=2x => 2x=2 => x=1
касательная - в точке х₀=1
f(x)=x²+p
f(x₀)=f(1)=1+p
f`(x)=2x
f`(x₀)=f`(1)=2
Уравнение касательной y=f`(x₀)*(x-x₀)+f(x₀):
y=2*(x-1)+(1+p)
y=2x-2+1+p
y=2x-1+p
Уравнение каcательной дано: у=2х-2, значит:
2х-1+р=2х-2
p=2x-2-2x+1
p=-1
1²-1=0
2*1-1=0
Точка пересечения (1;0)
График во вложении
 {y=x²+p
{y=2x-2
x²+p=2x-2
x²-2x+2+p=0
D=(-2)²-4*1*(2+p)=4-8-4p=-4-4p
Для того, чтобы уравнение имело 1 решение, дискриминант должен быть равен 0, значит:
-4-4р=0
-4р=4
р=-1
{y=x²-1
{y=2x-2
x²-1=2x-2
x²-1-2x+2=0
x²-2x+1=0
x₁+x₂=2
x₁*x₂=1
x₁=1
x₂=1
x=1
y=x²-1=1-1
y=0
Точка пересечения графиков: (1;0)
2 способ:
y=x²+p - парабола, у=2х-2 - касательная к параболе
Производная в точке х₀ равняется угловоvу коэффициэнту касательной
f`(x)=2x => 2x=2 => x=1
касательная - в точке х₀=1
f(x)=x²+p
f(x₀)=f(1)=1+p
f`(x)=2x
f`(x₀)=f`(1)=2
Уравнение касательной y=f`(x₀)*(x-x₀)+f(x₀):
y=2*(x-1)+(1+p)
y=2x-2+1+p
y=2x-1+p
Уравнение каcательной дано: у=2х-2, значит:
2х-1+р=2х-2
p=2x-2-2x+1
p=-1
1²-1=0
2*1-1=0
Точка пересечения (1;0)
График во вложении
 Войти чтобы добавить комментарий 
  Самые новые вопросы
   Помогите пожалуйста. Заранее благодарю    Звести одночлен до стандартного вигляду, вказати його коефіцієнти і степінь    Возведите многочлен 3[tex] {m}^{4} {n}^{2} [/tex] в третью степень. Чему равен коэффициент полученного одночлена.    Срочно!! Помогите решить систему уравнений!!ху+2х=5ху-3у=-6   _____Вычислите______   Решите систему уравнений   Решите задачу Алгебра 7 класс   _Упростите выражение_   Разложите данный многочлен на множители:20а^2+3аб-15аб-4ас   Какой цифрой оканчивается сумма 54³⁵ + 28²¹  
                                         0
                    0
                     0
                    0
                 
  
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			