
Вопрос задан 05.07.2020 в 15:57.
Предмет Алгебра.
Спрашивает Степанов Степан.
разность двух чисел равна 8 . каковы должны быть эти числа, чтобы произведение куба первого числа
на второе было наименьшим?

Ответы на вопрос

Отвечает Кон Владислав.
числа x ; x+8 разность чисел (x+8) - x =8
произведение куба первого числа на второе x^3*(x+8) -это функция
f(x)=x^3*(x+8)=x^4+8x^3
берем производную f(x) ' =4x^3+24x^2
приравниваем к 0 , находим критические точки
4x^3+24x^2 =0
4x^2 (x+6)=0
критические точки
x1=0
x2=-6
экстремумы функции
f(0) = 0^4+8*0^3 =0 локальный минимум
f(-6) = (-6)^4+8*(-6)^3 = - 432 наименьшее значение функции
искомые числа
x = -6
x+8 = -6 + 8 = 2
ответ -6 ; 2


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili