Вопрос задан 05.07.2020 в 15:57. Предмет Алгебра. Спрашивает Степанов Степан.

разность двух чисел равна 8 . каковы должны быть эти  числа, чтобы  произведение куба первого числа

на второе было наименьшим?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кон Владислав.

числа  x ; x+8   разность чисел  (x+8) - x =8

произведение куба первого числа на второе   x^3*(x+8)  -это функция

f(x)=x^3*(x+8)=x^4+8x^3

берем производную f(x) ' =4x^3+24x^2

приравниваем к 0 ,  находим критические точки

4x^3+24x^2 =0

4x^2 (x+6)=0

критические точки

x1=0    

x2=-6    

экстремумы функции

f(0) = 0^4+8*0^3 =0                   локальный минимум

f(-6) = (-6)^4+8*(-6)^3 = - 432  наименьшее значение функции

искомые числа

x = -6 

x+8 = -6 + 8 = 2

 

ответ  -6 ; 2

0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос