
№1.выполнить деление многочленов:(2х в кубе +х в квадрате-4х+3):(2х+1)


Ответы на вопрос

=(2x+1)(x^2-2)+5
ее надо решать столбиком



Конечно, я помогу с делением этих многочленов. У нас есть деление многочленов \( (2x^3 + x^2 - 4x^3) \) на \( (2x + 1) \).
Шаг за шагом, чтобы разделить многочлены, мы можем использовать метод долгого деления. Давайте начнем.
``` _________________ 2x + 1 | 2x^3 + x^2 - 4x ```
Сначала посмотрим, сколько раз \( 2x \) можно вычесть из \( 2x^3 \). Это \( x^2 \), так что напишем \( x^2 \) над стрелкой.
``` 2x^2 _________________ 2x + 1 | 2x^3 + x^2 - 4x - (2x^3 + x^2) _____________ -2x^2 - 4x ```
Теперь у нас есть \( -2x^2 - 4x \). Теперь посмотрим, сколько раз \( 2x \) можно вычесть из \(-2x^2\). Это \(-x\), так что напишем \(-x\) над стрелкой.
``` 2x^2 - x _________________ 2x + 1 | 2x^3 + x^2 - 4x - (2x^3 + x^2) _____________ -2x^2 - 4x -(-2x^2 - x) ___________ -3x ```
Теперь у нас есть \(-3x\). Это можно выразить как \(-3x\). Теперь посмотрим, сколько раз \(2x\) можно вычесть из \(-3x\). Это \(-\frac{3}{2}\), но остаток не делится на \(2x + 1\) без остатка.
Таким образом, результат деления:
\( (2x^3 + x^2 - 4x) \) на \( (2x + 1) \) равен \( (2x^2 - x - \frac{3}{2}) \) с остатком \(-3x\).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili