Вопрос задан 29.05.2019 в 17:09. Предмет Алгебра. Спрашивает Оловянникова Елизавета.

Треугольники PRQ и PKQ расположены так,что разные стороны относительно прямой PQ.,а вершины R и K

находятся по разные стороны относительно прямой PQ.Докажите что луч PQ является биссектрисой угла KPR, если PR = PK,QR=QK
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Григорьева Александра.
Строишь ромб.
противоположные концы (сверху и снизу) называешь P и Q.
другие два противоположных конца - K и R
Соединяешь точки P и Q.

На PR и на РK рисуешь одну маленькую черточку по центру каждого отрезка (показать что они равны) .
На QR и на QK рисуешь две маленькие черточки по центру каждого отрезка (показать что они равны) .

1. Треугольники PKQ и PRQ равны (по трём сторонам PK=PR KQ=RQ по условию, PQ - общая)
2. Из равенства треугольников следует равенство соответствующих углов. Следовательно угол KPQ = углу RPQ
3. Так как эти углы равны, то PQ - биссектриса угла KPR

Что и требовалось доказать
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос