Вопрос задан 29.05.2019 в 17:13. Предмет Геометрия. Спрашивает Йосипчук Андрій.

Угол параллелограмма равен 120 градусам,стороны относятся как 5:8,а меньшая диагональ равна

14см.Найдите большую диагональ и площадь параллелограмма.Спасибо,очень жду...
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Михляев Дмитрий.

Если теорему косинусов ещё не проходили. 
Пусть параллелограмм ABCD. Угол ABC = 120 гр. BAD = 60 гр. АВ - меньшая из сторон. 
Из вершины В опустим высоту на сторону AD в точку Е 
Угол АВЕ равен 30 гр. 
Отрезок АЕ в единицах пропорциональности равен 2,5 
Высота ВЕ 5 sqrt(3) / 2 (sqrt - квадратный корень) 
Отрезок ЕD находим вычитая АЕ из AD. Он равен 5,5 
Теперь по теореме Пифагора вычисляем в единицах пропорциональности меньшую диагональ Получается sqrt(5.5^2 + (2.5*SQRT(3))^2) = 7 
Единица пропорциональности равна 2 см. Значит стороны равны 10 см и 16 см, высота примерно 8,66 cм, площадь - 138,56 кв.см 
Чтобы найти большую диагональ из точки С опустим высоту на продолжение стороны AD в точку F. Треугольники DСF и АВЕ равны, значит равны и DF и AE. Таким образом в треугольнике ACF известны оба катета СF - высота, равна 5 sqrt(3) , AF = AD + DF = 16+5 = 21 
По теореме Пифагора находим, что AC примерно равно 22,72 см

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос