Вопрос задан 05.05.2019 в 02:38. Предмет Алгебра. Спрашивает Сурмай Артём.

В коробке лежат 50 электрических ламп мощностью 100 Вт и 30 мощность 60Вт . Наудачу выбирают две

лампы. Найти вероятность того,что они окажуться а) одинаковой мощностью; б) разной мощностью
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Леонардыч Евгений.
А)62,5% т.к 100:(50+30)=1.25*50=62,5%
Б)37,5% (остаток)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculating the Probability of Selecting Two Bulbs

To calculate the probability of selecting two bulbs with specific power ratings, we can use the following approach:

1. Probability of Selecting Two Bulbs of the Same Power Rating: - The probability of selecting two bulbs of the same power rating can be calculated using the formula: \[ P(\text{{same}}) = \frac{{\text{{Number of ways to choose 2 bulbs of the same power}}}}{{\text{{Total number of ways to choose 2 bulbs}}}} \] - In this case, we have 50 bulbs of 100W and 30 bulbs of 60W.

2. Probability of Selecting Two Bulbs of Different Power Ratings: - The probability of selecting two bulbs of different power ratings can be calculated using the formula: \[ P(\text{{different}}) = \frac{{\text{{Number of ways to choose 1 bulb of 100W and 1 bulb of 60W}}}}{{\text{{Total number of ways to choose 2 bulbs}}}} \]

Let's calculate these probabilities step by step.

Probability of Selecting Two Bulbs of the Same Power Rating:

The probability of selecting two bulbs of the same power rating can be calculated as follows:

\[ P(\text{{same}}) = \frac{{\text{{Number of ways to choose 2 bulbs of the same power}}}}{{\text{{Total number of ways to choose 2 bulbs}}}} \]

The total number of ways to choose 2 bulbs is given by the combination formula: \[ \text{{Total number of ways}} = \binom{80}{2} \]

The number of ways to choose 2 bulbs of the same power is the sum of combinations for 100W bulbs and 60W bulbs: \[ \text{{Number of ways to choose 2 bulbs of the same power}} = \binom{50}{2} + \binom{30}{2} \]

Let's calculate the probability.

Probability of Selecting Two Bulbs of Different Power Ratings:

The probability of selecting two bulbs of different power ratings can be calculated as follows:

\[ P(\text{{different}}) = \frac{{\text{{Number of ways to choose 1 bulb of 100W and 1 bulb of 60W}}}}{{\text{{Total number of ways to choose 2 bulbs}}}} \]

The number of ways to choose 1 bulb of 100W and 1 bulb of 60W is given by the product of the number of 100W bulbs and the number of 60W bulbs: \[ \text{{Number of ways to choose 1 bulb of 100W and 1 bulb of 60W}} = 50 \times 30 \]

Let's calculate the probability.

Results:

After calculating the probabilities, we find: - Probability of selecting two bulbs of the same power rating: - \[ P(\text{{same}}) = \frac{{\binom{50}{2} + \binom{30}{2}}}{{\binom{80}{2}}} \] - \[ P(\text{{same}}) \approx 0.493 \]

- Probability of selecting two bulbs of different power ratings: - \[ P(\text{{different}}) = \frac{{50 \times 30}}{{\binom{80}{2}}} \] - \[ P(\text{{different}}) \approx 0.507 ]

Therefore, the probabilities are approximately: - Probability of selecting two bulbs of the same power rating: 0.493 - Probability of selecting two bulbs of different power ratings: 0.507

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос