
1.(xy+x²y²)(x²y+xy²) 2.(2a²-5b²)(3a²+4b²) 3.(5x²-6y²)(6x²-5y²) 4.(x²+2x+1)(x+3)


Ответы на вопрос

2. (2a² - 5b²)(3a² + 4b²) = 6a⁴ + 8a²b² - 15a²b² - 20b⁴ = 6a⁴ - 7a²b² - 20b⁴
3. (5x² - 6y²)(6x² - 5y²) = 30x⁴ - 25x²y² - 36y⁴ + 30x²y² = 30x⁴ + 5x²y² - 36y⁴
4. (x² + 2x + 1)(x + 3) = x³ + 2x² + x + 3x² + 6x + 3 = x³ + 5x² + 7x + 3



Sure, I can help you with that. Let's go through each expression step by step.
1. (xy + x²y²)(x²y + xy²)
To simplify this expression, we can use the distributive property of multiplication. We will multiply each term in the first set of parentheses with each term in the second set of parentheses, and then combine like terms.
Let's start by multiplying the first term in the first set of parentheses (xy) with each term in the second set of parentheses: (xy)(x²y) = x³y² (xy)(xy²) = x²y³
Next, let's multiply the second term in the first set of parentheses (x²y²) with each term in the second set of parentheses: (x²y²)(x²y) = x⁴y⁴ (x²y²)(xy²) = x³y⁴
Now, let's combine all the terms we obtained: x³y² + x²y³ + x⁴y⁴ + x³y⁴
This is the simplified form of the expression (xy + x²y²)(x²y + xy²).
2. (2a² - 5b²)(3a² + 4b²)
Similarly, we can use the distributive property to simplify this expression.
Let's start by multiplying the first term in the first set of parentheses (2a²) with each term in the second set of parentheses: (2a²)(3a²) = 6a⁴ (2a²)(4b²) = 8a²b²
Next, let's multiply the second term in the first set of parentheses (-5b²) with each term in the second set of parentheses: (-5b²)(3a²) = -15a²b² (-5b²)(4b²) = -20b⁴
Now, let's combine all the terms we obtained: 6a⁴ + 8a²b² - 15a²b² - 20b⁴
Simplifying further, we have: 6a⁴ - 7a²b² - 20b⁴
This is the simplified form of the expression (2a² - 5b²)(3a² + 4b²).
3. (5x² - 6y²)(6x² - 5y²)
Again, we will use the distributive property to simplify this expression.
Let's start by multiplying the first term in the first set of parentheses (5x²) with each term in the second set of parentheses: (5x²)(6x²) = 30x⁴ (5x²)(-5y²) = -25x²y²
Next, let's multiply the second term in the first set of parentheses (-6y²) with each term in the second set of parentheses: (-6y²)(6x²) = -36x²y² (-6y²)(-5y²) = 30y⁴
Now, let's combine all the terms we obtained: 30x⁴ - 25x²y² - 36x²y² + 30y⁴
Simplifying further, we have: 30x⁴ - 61x²y² + 30y⁴
This is the simplified form of the expression (5x² - 6y²)(6x² - 5y²).
4. (x² + 2x + 1)(x + 3)
To simplify this expression, we will use the distributive property once again.
Let's start by multiplying the first term in the first set of parentheses (x²) with each term in the second set of parentheses: (x²)(x) = x³ (x²)(3) = 3x²
Next, let's multiply the second term in the first set of parentheses (2x) with each term in the second set of parentheses: (2x)(x) = 2x² (2x)(3) = 6x
Finally, let's multiply the third term in the first set of parentheses (1) with each term in the second set of parentheses: (1)(x) = x (1)(3) = 3
Now, let's combine all the terms we obtained: x³ + 3x² + 2x² + 6x + x + 3
Simplifying further, we have: x³ + 5x² + 7x + 3
This is the simplified form of the expression (x² + 2x + 1)(x + 3).
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili