
Теорема о корнях квадратного уравнения если a+b+c=0


Ответы на вопрос




Theorem on the Roots of a Quadratic Equation when a + b + c = 0
When the sum of the coefficients of a quadratic equation is equal to zero (a + b + c = 0), the roots of the quadratic equation can be determined using the following theorem.
Quadratic Equation: The general form of a quadratic equation is given by ax^2 + bx + c = 0, where a, b, and c are constants and x is the variable.
Theorem: The roots of the quadratic equation ax^2 + bx + c = 0, where a + b + c = 0, can be determined using the following relationships:
1. Sum of the Roots: The sum of the roots, denoted as x1 + x2, is equal to -b/a. 2. Product of the Roots: The product of the roots, denoted as x1 * x2, is equal to c/a.
Example Calculation:
Let's consider an example with specific values for a, b, and c to illustrate the application of the theorem.Given: a = 4 b = -3 c = 1
Using the theorem, we can calculate the roots of the quadratic equation ax^2 + bx + c = 0, where a + b + c = 0.
Calculation: 1. Discriminant (D): D = b^2 - 4ac - D = (-3)^2 - 4*4*1 - D = 9 - 16 - D = -7
Since the discriminant (D) is less than 0, the roots are complex.
2. Sum and Product of the Roots: - Sum of the roots (x1 + x2) = -b/a = 3/4 - Product of the roots (x1 * x2) = c/a = 1/4
Therefore, the roots of the quadratic equation are complex and can be expressed as x1 = (3 + i)/4 and x2 = (3 - i)/4, where i is the imaginary unit.
This example demonstrates how the theorem can be applied to find the roots of a quadratic equation when the sum of the coefficients is equal to zero.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili