
Вопрос задан 19.03.2019 в 06:34.
Предмет Алгебра.
Спрашивает Канак Андрійко.
Произведение трех последовательных членов геометрической прогрессии с отрицательным знаменателем
равно 27.Найдите наибольшую сумму этих трех членов среди всех прогрессий, обладающих указанными свойствами.

Ответы на вопрос

Отвечает Пояркова Елизавета.
Пусть первый член прогрессии равен a, знаменатель равен q, тогда
a^3q^3=27, aq=3, то есть второй член равен 3. Но тогда a<0, aq^2<0. Нужно найти максимум a+aq+aq^2=a+aq^2+3<3-2sqrt(a^2q^2)=-3. Это значение достигается например при q=-1, a=-3
a^3q^3=27, aq=3, то есть второй член равен 3. Но тогда a<0, aq^2<0. Нужно найти максимум a+aq+aq^2=a+aq^2+3<3-2sqrt(a^2q^2)=-3. Это значение достигается например при q=-1, a=-3


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili