Вопрос задан 19.03.2019 в 06:34. Предмет Алгебра. Спрашивает Канак Андрійко.

Произведение трех последовательных членов геометрической прогрессии с отрицательным знаменателем

равно 27.Найдите наибольшую сумму этих трех членов среди всех прогрессий, обладающих указанными свойствами.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пояркова Елизавета.
Пусть первый член прогрессии равен a, знаменатель равен q, тогда
a^3q^3=27, aq=3, то есть второй член равен 3. Но тогда a<0, aq^2<0. Нужно найти максимум a+aq+aq^2=a+aq^2+3<3-2sqrt(a^2q^2)=-3. Это значение достигается например при q=-1, a=-3
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос