Вопрос задан 26.02.2019 в 01:14. Предмет Алгебра. Спрашивает Кузнецова Ангелина.

4x^2+20x=0 как решать???

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Воронова София.
Вынеси х за скобку и получится:
х (4х+20) = 0
Произведение равно нулю, когда один множитель равен нулю, а другой при этом не теряет смысл, то есть:
х1 = 0 или
 4х + 20 =0
4х = -20
х= -5 
          
0 0
Отвечает Ганчева Лена.
4x²+20x=0
4x(x+5)=0
x=0 или x+5=0
             x=-5
Ответ: 0; -5
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить уравнение 4x^2 + 20x = 0, мы можем применить метод факторизации или метод использования формулы квадратного уравнения.

1. Метод факторизации: Сначала выносим общий множитель: 4x(x + 5) = 0 Теперь у нас есть два множителя, умножение которых дает ноль. Это значит, что один из множителей должен быть равен нулю: 4x = 0 или x + 5 = 0 Отсюда получаем два возможных решения: x = 0 или x = -5

2. Метод использования формулы квадратного уравнения: Уравнение 4x^2 + 20x = 0 можно переписать в виде: 4x^2 + 20x + 0 = 0 Теперь мы можем использовать формулу квадратного уравнения: x = (-b ± √(b^2 - 4ac)) / (2a) где a = 4, b = 20 и c = 0. Подставляем значения в формулу: x = (-20 ± √(20^2 - 4*4*0)) / (2*4) x = (-20 ± √(400)) / 8 x = (-20 ± 20) / 8

Теперь решим два возможных случая: a) x = (-20 + 20) / 8 = 0 / 8 = 0 b) x = (-20 - 20) / 8 = -40 / 8 = -5

Таким образом, уравнение 4x^2 + 20x = 0 имеет два решения: x = 0 и x = -5.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Уравнение \(4x^2 + 20x = 0\) можно решить, применяя метод факторизации или используя квадратное уравнение. Давайте рассмотрим оба метода.

Метод 1: Факторизация

1. Вынесем общий множитель, который в данном случае является 4x:

\(4x(x + 5) = 0\)

2. Теперь у нас есть произведение двух множителей, равное нулю. По свойству нулевого произведения, это возможно только если хотя бы один из множителей равен нулю.

\(4x = 0\) или \(x + 5 = 0\)

3. Решим каждое уравнение по отдельности:

- Для \(4x = 0\) получаем \(x = 0\) - Для \(x + 5 = 0\) получаем \(x = -5\)

Таким образом, уравнение имеет два решения: \(x = 0\) и \(x = -5\).

Метод 2: Квадратное уравнение

Уравнение \(ax^2 + bx + c = 0\) имеет решения, заданные формулой:

\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

В данном случае, у нас \(a = 4\), \(b = 20\), и \(c = 0\). Подставим эти значения в формулу:

\[ x = \frac{-20 \pm \sqrt{20^2 - 4(4)(0)}}{2(4)} \]

\[ x = \frac{-20 \pm \sqrt{400}}{8} \]

\[ x = \frac{-20 \pm 20}{8} \]

Таким образом, получаем два решения:

1. \( x = \frac{-20 + 20}{8} = 0 \) 2. \( x = \frac{-20 - 20}{8} = -5 \)

Таким образом, результаты совпадают с теми, что мы получили методом факторизации: \(x = 0\) и \(x = -5\).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос