
Вопрос задан 26.02.2019 в 00:23.
Предмет Алгебра.
Спрашивает Камышникова Марина.
Найдите наименьшее натуральное число, которое оканчивается на 17, делится на 17 и имеет сумму цифр,
равную 17

Ответы на вопрос

Отвечает Сакин Никита.
Пусть это число А, так как оно оканчивается цифрами 17 и делится на 17 (17 делится на 17), то представив число А в виде A=100B+17, где B - некоторое неотрицательное целое число. Видим что
A-17=100B+17-17=100B должно делится на 17, так как 100 на 17 не делится, то число В должно делится на 17. При данных условиях оно должно быть наименьшим, и сумма цифр должна ровнять 17-1-7=9
Так как сумма цифр числа В равна 9, то оно делится на 9(а так как оно делится еще на 17), НОК(9, 17)=9*17=153, значит число В равно 153, а данное число равно 15317
A-17=100B+17-17=100B должно делится на 17, так как 100 на 17 не делится, то число В должно делится на 17. При данных условиях оно должно быть наименьшим, и сумма цифр должна ровнять 17-1-7=9
Так как сумма цифр числа В равна 9, то оно делится на 9(а так как оно делится еще на 17), НОК(9, 17)=9*17=153, значит число В равно 153, а данное число равно 15317



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения этой задачи нам нужно найти наименьшее натуральное число, которое удовлетворяет


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili