Вопрос задан 22.02.2019 в 00:00. Предмет Алгебра. Спрашивает Малков Рома.

Решите неравенство: log0,5(2-x)>-1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Прудник Катя.
{2-x>0⇒x<2
{2-x<2⇒x>0
x∈(0;2)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить неравенство log0,5(2-x) > -1, мы должны применить некоторые свойства логарифмов и алгебраические преобразования, чтобы изолировать переменную x.

Свойства логарифмов

Свойство 1: log_a(b) > c тогда и только тогда, когда a^c < b.

Применение свойств логарифмов к неравенству

Используя свойство 1, мы можем переписать неравенство в эквивалентной форме:

0,5^(log0,5(2-x)) > 0,5^(-1)

Упрощение

0,5^(log0,5(2-x)) > 1/2

Переписывание в экспоненциальной форме

Теперь мы можем переписать неравенство в экспоненциальной форме:

2-x > 1/2

Решение

Для решения данного уравнения, мы можем начать с переноса 1/2 на правую сторону:

2-x > 1/2 x < 2 - 1/2 x < 3/2

Ответ

Таким образом, решение неравенства log0,5(2-x) > -1 - это x < 3/2.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос