
Решите неравенства c модулем |5x+3| -4 ≥ 9 |10-4x| ≤ 2 |3+x|+7<10 |4-x| < 5 |3x-9|+2>7
|3x+2| - 1 ≥ 10

Ответы на вопрос

1) |5x+3|>=13
5x+3>=13 и 5x+3<= -13
5x>=10
x>=2
5x<=-16
x<= -3,2
(-&; -3,2] [2; +&)
2) 10-4x<=2 и 10-4x>=-2
-4x<=-8
x>=2
-4x>=-12
x<=3
[2; 3]
3) 3+x<3 и 3+x>-3
x<0
x> -6
(-6; 2)
4) 4-x<5 и 4-x>-5
-x<1
x> -1
-x>-9
x<9
(-1; 9)
5) 3x-9>5 и 3x-9<-5
3x>14
x>14/3
3x<4
x<4/3
(-&; 4/3) (14/3; +&)
6) 3x+2>=11 и 3x+2<=-11
3x>=9
x>=3
3x<=-13
x<=-13/3
(-&; -13/3] [3; +&)



Solving the Inequalities with Absolute Value
To solve the given inequalities involving absolute values, we will break them down into separate cases based on the sign of the expressions inside the absolute value bars. Let's solve each inequality step by step.
1. |5x + 3| - 4 ≥ 9 |10 - 4x|
We have two absolute value expressions here. Let's consider two cases:
Case 1: (5x + 3) ≥ 0 and (10 - 4x) ≥ 0 - For (5x + 3) ≥ 0, we have x ≥ -3/5. - For (10 - 4x) ≥ 0, we have x ≤ 10/4 = 5/2.
Case 2: (5x + 3) < 0 and (10 - 4x) < 0 - For (5x + 3) < 0, we have x < -3/5. - For (10 - 4x) < 0, we have x > 5/2.
Combining the solutions from both cases, we have -3/5 ≤ x ≤ 5/2.
2. |3 + x| + 7 < 10 |4 - x|
Similar to the previous inequality, we have two absolute value expressions. Let's consider two cases:
Case 1: (3 + x) ≥ 0 and (4 - x) ≥ 0 - For (3 + x) ≥ 0, we have x ≥ -3. - For (4 - x) ≥ 0, we have x ≤ 4.
Case 2: (3 + x) < 0 and (4 - x) < 0 - For (3 + x) < 0, we have x < -3. - For (4 - x) < 0, we have x > 4.
Combining the solutions from both cases, we have x < -3 or x > 4.
3. |3x - 9| + 2 > 7 |3x + 2|
Again, we have two absolute value expressions. Let's consider two cases:
Case 1: (3x - 9) ≥ 0 and (3x + 2) ≥ 0 - For (3x - 9) ≥ 0, we have x ≥ 3. - For (3x + 2) ≥ 0, we have x ≥ -2/3.
Case 2: (3x - 9) < 0 and (3x + 2) < 0 - For (3x - 9) < 0, we have x < 3. - For (3x + 2) < 0, we have x < -2/3.
Combining the solutions from both cases, we have x < -2/3 or x ≥ 3.
4. |3x + 2| - 1 ≥ 10
We have a single absolute value expression here. Let's consider two cases:
Case 1: (3x + 2) ≥ 0 - For (3x + 2) ≥ 0, we have x ≥ -2/3.
Case 2: (3x + 2) < 0 - For (3x + 2) < 0, we have x < -2/3.
Combining the solutions from both cases, we have x < -2/3 or x ≥ -2/3.
Summary of Solutions
1. |5x + 3| - 4 ≥ 9 |10 - 4x|: -3/5 ≤ x ≤ 5/2 2. |3 + x| + 7 < 10 |4 - x|: x < -3 or x > 4 3. |3x - 9| + 2 > 7 |3x + 2|: x < -2/3 or x ≥ 3 4. |3x + 2| - 1 ≥ 10: x < -2/3 or x ≥ -2/3
Please note that these solutions are based on the given inequalities and the assumptions made during the solution process.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili