
Решите систему уравнений


Ответы на вопрос




System of Equations
To solve the system of equations, we will use the information provided in the search results snippets.
The system of equations is not clearly specified in the user's query. However, based on the available search results, I will provide solutions for two different systems of equations.
# System 1:
Equation 1: 2x - y = 7 Equation 2: x^2 - xy = 12To solve this system of equations, we can use substitution or elimination method. Let's use the substitution method.
From Equation 1, we can express y in terms of x: y = 2x - 7
Substituting this value of y into Equation 2, we get: x^2 - x(2x - 7) = 12 x^2 - 2x^2 + 7x = 12 -x^2 + 7x - 12 = 0
To solve this quadratic equation, we can factor it or use the quadratic formula. Let's use the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = -1, b = 7, and c = -12. Substituting these values into the quadratic formula, we get: x = (-7 ± √(7^2 - 4(-1)(-12))) / (2(-1)) x = (-7 ± √(49 - 48)) / (-2) x = (-7 ± √1) / (-2) x = (-7 ± 1) / (-2)
So, we have two possible values for x: x1 = (-7 + 1) / (-2) = -6 / -2 = 3 x2 = (-7 - 1) / (-2) = -8 / -2 = 4
Now, let's substitute these values of x back into Equation 1 to find the corresponding values of y: For x = 3: 2(3) - y = 7 6 - y = 7 -y = 7 - 6 -y = 1 y = -1
For x = 4: 2(4) - y = 7 8 - y = 7 -y = 7 - 8 -y = -1 y = 1
Therefore, the solutions to the system of equations are: (x, y) = (3, -1) and (4, 1).
# System 2:
Equation 1: 3x - y = 3 Equation 2: 3x - 2y = 0To solve this system of equations, we can again use the substitution or elimination method. Let's use the elimination method.
Multiplying Equation 1 by 2, we get: 2(3x - y) = 2(3) 6x - 2y = 6
Now, we can subtract Equation 2 from this new equation: (6x - 2y) - (3x - 2y) = 6 - 0 6x - 2y - 3x + 2y = 6 3x = 6 x = 2
Substituting this value of x into Equation 1, we get: 3(2) - y = 3 6 - y = 3 -y = 3 - 6 -y = -3 y = 3
Therefore, the solution to the system of equations is: (x, y) = (2, 3).
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili