
Вопрос задан 24.11.2018 в 18:45.
Предмет Алгебра.
Спрашивает Лингер Денис.
Найти общее решение или общий интеграл дифференциального уравнения. Найти частное решение
дифференциального уравнения, соответствующее начальным условиям (x0, y0)


Ответы на вопрос

Отвечает Беляк Діма.
(1+y^2)dx-√x dy=0
x0=4; y0=1
Уравнение с разделяющимися переменными, самое простое.
(1+y^2)dx = √x dy
dx/√x = dy/(1+y^2)
Перепишем в привычном виде
dy/(1+y^2) = dx/√x
Интегрируем обе стороны
arctg(y)=2√x + C
y=tg(2√x + C)
Подставляем начальные условия
1=tg(2√4 + C)=tg(4+C)
4+C=Π/4
C=Π/4-4
Подставляем найденное С.
y=tg(2√x + Π/4 - 4)
x0=4; y0=1
Уравнение с разделяющимися переменными, самое простое.
(1+y^2)dx = √x dy
dx/√x = dy/(1+y^2)
Перепишем в привычном виде
dy/(1+y^2) = dx/√x
Интегрируем обе стороны
arctg(y)=2√x + C
y=tg(2√x + C)
Подставляем начальные условия
1=tg(2√4 + C)=tg(4+C)
4+C=Π/4
C=Π/4-4
Подставляем найденное С.
y=tg(2√x + Π/4 - 4)


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili