Вопрос задан 24.11.2018 в 18:45. Предмет Алгебра. Спрашивает Лингер Денис.

Найти общее решение или общий интеграл дифференциального уравнения. Найти частное решение

дифференциального уравнения, соответствующее начальным условиям (x0, y0)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Беляк Діма.
(1+y^2)dx-√x dy=0
x0=4; y0=1
Уравнение с разделяющимися переменными, самое простое.
(1+y^2)dx = √x dy
dx/√x = dy/(1+y^2)
Перепишем в привычном виде
dy/(1+y^2) = dx/√x
Интегрируем обе стороны
arctg(y)=2√x + C
y=tg(2√x + C)
Подставляем начальные условия
1=tg(2√4 + C)=tg(4+C)
4+C=Π/4
C=Π/4-4
Подставляем найденное С.
y=tg(2√x + Π/4 - 4)
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос