
Найдите S18, если в арифметической прогрессии (an) a4+a15=620


Ответы на вопрос

Ответ:



В данной задаче нам дано, что в арифметической прогрессии с первым членом a1 и разностью d, сумма четвертого и пятнадцатого членов равна 620.
Мы знаем, что члены арифметической прогрессии можно найти по следующей формуле:
an = a1 + (n - 1) * d,
где an обозначает n-ый член прогрессии.
Мы должны найти значение s18, которое представляет собой сумму первых 18 членов прогрессии.
Формула для нахождения суммы первых n членов арифметической прогрессии имеет вид:
Sn = (n/2) * (a1 + an).
Известно, что a4 + a15 = 620. Подставим значения a4 и a15 в эту формулу:
(4/2) * (a1 + a4) + (15/2) * (a1 + a15) = 620.
Разделим обе части уравнения на 2:
2 * (a1 + a4) + 15 * (a1 + a15) = 1240.
Упростим выражение:
2a1 + 2a4 + 15a1 + 15a15 = 1240,
17a1 + 2a4 + 15a15 = 1240.
Теперь мы можем использовать формулу нахождения an для нахождения значений a1 и a4. Подставим значения an = a1 + 17d и an = a1 + 4d в уравнение:
a1 + 17d + 2(a1 + 4d) + 15(a1 + 17d) = 1240.
Раскроем скобки:
a1 + 17d + 2a1 + 8d + 15a1 + 255d = 1240.
Сгруппируем члены с одинаковыми переменными:
18a1 + 280d = 1240.
Теперь у нас есть два уравнения:
17a1 + 2a4 + 15a15 = 1240,
18a1 + 280d = 1240.
Мы можем решить это уравнение методом подстановки или методом сложения и вычитания, чтобы найти значения a1 и a4.
Окончательное решение этого уравнения зависит от значений a1 и a4.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili