Вопрос задан 09.08.2018 в 16:21. Предмет Алгебра. Спрашивает Тверской Семён.

Уравнение 7x^2-11x-6=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ягафаров Ильназ.
7х²-11х-6=0
Д=121-4*7*(-11)=289
х₁=(11-√289)/14=-6/14=-3/7
х₂=(11+√289)/14=28/14=2
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Решение квадратного уравнения

Дано квадратное уравнение: 7x^2 - 11x - 6 = 0.

Чтобы найти решения этого уравнения, мы можем использовать формулу квадратного корня (или дискриминанта). Формула выглядит следующим образом:

x = (-b ± √(b^2 - 4ac)) / (2a),

где a, b и c - коэффициенты уравнения.

В нашем случае, коэффициенты уравнения равны: a = 7, b = -11, c = -6.

Теперь, подставим значения коэффициентов в формулу и решим ее:

x = (-(-11) ± √((-11)^2 - 4 * 7 * (-6))) / (2 * 7) = (11 ± √(121 + 168)) / 14 = (11 ± √289) / 14.

Теперь, найдем значения подкоренного выражения:

√289 = 17.

Итак, у нас есть два решения:

x1 = (11 + 17) / 14 = 28 / 14 = 2, x2 = (11 - 17) / 14 = -6 / 14 = -3/7.

Таким образом, решения уравнения 7x^2 - 11x - 6 = 0 равны x1 = 2 и x2 = -3/7.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос