
Найти координату точки , в которойНайти координату точки , в которой касательная к параболе y=x(в
квадрате)-x-12 образует с осью OX угол 45 градусов

Ответы на вопрос





Finding the Coordinate of the Point where the Tangent to the Parabola Forms a 45-Degree Angle with the x-Axis
To find the coordinate of the point where the tangent to the parabola y = x^2 - x - 12 forms a 45-degree angle with the x-axis, we need to determine the point of tangency.
The slope of the tangent line to a curve at a given point is equal to the derivative of the curve at that point. Therefore, we can find the slope of the tangent line to the parabola at the point of tangency by taking the derivative of the equation y = x^2 - x - 12 with respect to x.
Taking the derivative of the equation, we get:
dy/dx = 2x - 1 To find the point of tangency, we need to find the x-coordinate where the slope of the tangent line is equal to the tangent of a 45-degree angle. The tangent of a 45-degree angle is equal to 1.
Setting the derivative equal to 1, we have:
2x - 1 = 1
Solving for x, we get:
2x = 2
x = 1
Now that we have the x-coordinate of the point of tangency, we can substitute it back into the original equation y = x^2 - x - 12 to find the y-coordinate.
Substituting x = 1 into the equation, we have:
y = 1^2 - 1 - 12
y = -12
Therefore, the coordinate of the point where the tangent to the parabola forms a 45-degree angle with the x-axis is (1, -12).
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili