Вопрос задан 06.12.2023 в 14:58. Предмет Алгебра. Спрашивает Кот Сережа.

Спростити вираз (x-1)^2-(x+3)(x-3)​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Барташевич Алеся.

Ответ:

10-2x

Объяснение:

(x-1)^2-(x+3)(x-3)​ = x^2-2x+1-(x^2-9) = x^2-2x+1-x^2+9 = -2x+10=10-2x

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения данного выражения, мы можем применить правила раскрытия скобок и сокращения подобных слагаемых.

Выражение (x-1)^2 обозначает квадрат разности (x-1). Это можно записать как (x-1)(x-1) и раскрыть скобки, умножая каждый элемент первой скобки на каждый элемент второй скобки:

(x-1)(x-1) = x(x-1) - 1(x-1) = x^2 - x - x + 1 = x^2 - 2x + 1

Выражение (x+3)(x-3) можно раскрыть, используя правило разности квадратов:

(x+3)(x-3) = x(x-3) + 3(x-3) = x^2 - 3x + 3x - 9 = x^2 - 9

Теперь, чтобы упростить исходное выражение, мы вычитаем раскрытое выражение (x+3)(x-3) из выражения (x-1)^2:

(x-1)^2 - (x+3)(x-3) = (x^2 - 2x + 1) - (x^2 - 9)

Теперь мы можем выполнить операцию вычитания, вычитая каждый элемент второго выражения из соответствующего элемента первого выражения:

(x^2 - 2x + 1) - (x^2 - 9) = x^2 - 2x + 1 - x^2 + 9

Здесь x^2 и -x^2 сокращаются, а 1 и 9 складываются:

x^2 - 2x + 1 - x^2 + 9 = -2x + 10

Таким образом, упрощенное выражение равно -2x + 10.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос