Вопрос задан 14.11.2023 в 19:40. Предмет Алгебра. Спрашивает Джафарова Айда.

Даны члены арифметической прогрессии а6=6,29 и а7 = 12,06 Вычислите разность прогрессии d =

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Карапетян Мариам.

Ответ:

d=5,77

Объяснение:

а6=6,29

а7 = 12,06         d=a7-a6=12,06 -6,29=5,77

0 0
Отвечает Романова Софья.

Ответ:

5,77

Объяснение:

d=a7-a6=12,06-6,29=5,77

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи нам даны значения шестого и седьмого членов арифметической прогрессии: а6 = 6,29 и а7 = 12,06.

Формула для нахождения общего члена арифметической прогрессии имеет вид:

а(n) = a1 + (n-1) * d,

где а(n) - n-ый член прогрессии, а1 - первый член прогрессии, d - разность прогрессии, n - номер члена прогрессии.

Для того чтобы найти разность прогрессии d, используем значения шестого и седьмого членов:

а6 = a1 + 5 * d,

а7 = a1 + 6 * d.

Вычтем первое уравнение из второго:

а7 - а6 = (a1 + 6 * d) - (a1 + 5 * d),

12,06 - 6,29 = a1 - a1 + 6d - 5d,

5,77 = d.

Таким образом, разность прогрессии d равна 5,77.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос