
Нужно подробное решение. Первый насос наполняет бассейн за 8 ч., а второй насос выкачивает всю воду
из бассейна за 18 ч.. Считая , что скорости работы насосов постоянны, определите, за какое время будет наполнен этот бассейн, если он пустой, и оба насоса начнут работать одновременно.

Ответы на вопрос

тогда время, за которое бассейн заполнится полностью = 1/(5/72)=72/5= 14 часов 24 минуты



Problem Analysis
We are given two pumps: the first pump fills the pool in 8 hours, and the second pump empties the pool in 18 hours. We need to determine how long it will take to fill the pool if both pumps start working simultaneously.Solution
To solve this problem, we can use the concept of rates. Let's assume that the rate at which the first pump fills the pool is R1 (in pools per hour) and the rate at which the second pump empties the pool is R2 (in pools per hour).Since the first pump fills the pool in 8 hours, its rate can be calculated as R1 = 1/8 pools per hour. Similarly, since the second pump empties the pool in 18 hours, its rate can be calculated as R2 = 1/18 pools per hour.
Now, when both pumps are working simultaneously, their rates add up. So, the combined rate of filling the pool can be calculated as R = R1 - R2.
To find the time it takes to fill the pool, we can use the formula Time = 1/R.
Let's calculate the values:
R1 = 1/8 pools per hourR2 = 1/18 pools per hour R = R1 - R2 = (1/8) - (1/18) pools per hour
Now, let's calculate the time it takes to fill the pool:
Time = 1/R = 1 / ((1/8) - (1/18)) hours
Calculation
To calculate the time it takes to fill the pool, we need to find the reciprocal of the difference between the rates of the two pumps.Time = 1 / ((1/8) - (1/18)) hours
Using the formula for the difference of fractions, we can simplify the expression:
Time = 1 / ((9/72) - (4/72)) hours
Time = 1 / (5/72) hours
To divide by a fraction, we can multiply by its reciprocal:
Time = 1 * (72/5) hours
Time = 72/5 hours
Answer
Therefore, it will take 14.4 hours to fill the pool if both pumps start working simultaneously.Conclusion
In conclusion, if the first pump fills the pool in 8 hours and the second pump empties the pool in 18 hours, it will take 14.4 hours to fill the pool if both pumps start working simultaneously.Please let me know if I can help you with anything else.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili